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Introduction 

The value of geometry teaching during compulsory schooling 

needs no demonstration. We will therefore confine ourselves to 

citing a few points from the report of the Commission of 

Reflection on Mathematics Teaching (2002) [1], which 

highlights the fact that geometry firstly enables space to be 

understood by means of, among other things, spatial 

visualization, and secondly lays the groundwork for learning 

how to reason. The report also states that geometry is used in 

everyday life to do things such as follow instructions to 

assemble a product, change the layout of a space, get around in 

a building or a city with the help of a map or plan, follow an 

underground route and so on (Duroisin, 2015) [2]. In 

professional life, this discipline is equally useful for a number 

of different jobs, including architecture, engineering and 

mechanics, as well as for any profession that requires the use of 

3D visualization software, for example. In addition, as well as 

in mathematics, it is also used in other disciplines such as 

physics and chemistry [3]. 
 

However, geometry is one of the most difficult subjects to teach, 

and one in which students’results are often disappointing [4-10]. 

Perrin-Glorian (2005, p. 7) [11] argues that ‘stubborn difficulties 

regarding the use of figures in solving geometry problems were 

identified long ago in secondary school students, both in 

constructing figures and in demonstrating the properties of 

geometrical figures’. Despite this, the teaching of geometry in 

primary school prioritises straight lines, their relationships and 

their properties and the most obvious 2D shapes (squares, 

triangle, parallelograms, etc.), the main emphasis being on their 

outlines. Teaching thus goes no further than a ‘surface’ view of 

the figure [12]. Yet, as Duval and Godin note (2005, p. 7) [13], 

‘such an order of introduction is inconsistent with the way 

figures are perceived and interpreted outside mathematics’. 

Moreover, emphasis is placed on a cultural vocabulary 

(perpendicular, parallel, intersecting, diagonals, medians, lines, 

rays, segments) and great importance is ascribed to the handling 

of the traditional instruments only (rulers, set squares, 

compasses), with a concern for the precision of drawings that 

takes up much of the teaching time. For her part, Perrin-Glorian 

(2005) [11] notes that geometry is insufficiently problem-based 

and that the teaching of it is primarily ostensive. Many 

difficulties are therefore observed in learning geometry and 

some of them are specifically linked to visualization. 
 

The research focuses on the development of non-iconic 

visualization in students at the end of primary education in order 

to facilitate their transition to the theoretical approach to 

geometry in secondary. Through this study, the aim is to 

evaluate the implementation of a didactic engineering that 

develops dimensional deconstruction. This goal will be pursued 

by means of activities based on exercises involving completing 

or reproducing figures. This article presents a quasi-

experimentation plan conducted in Belgium and describes his 

results. The hypothesis is that a didactic transposition focusing 

on the principle of dimensional deconstruction would enable 

students in the fourth cycle of primary school gradually to start 

using visualization of the non-iconic type (in which attention 

varies between surfaces, lines and points). The independent 

variable targeted is the development of students’ visual acuity in 

the analysis of figures, while the dependent variable, which will 

be the subject of observation in the study, concerns the students’ 

performance. 
 

Spatial visualization in geometry  

Like mental rotation and spatial orientation, spatial visualization 

is a spatial ability [14]. This ability can be defined as multistep 

‘manipulations of spatially presented information’ [15]. Lowrie 

and al. (2019) [14] add that information mentally manipulated  
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are spatial properties of objects. This ability requires flexible 

activation of different operational strategies [16] and involved 

cognitive demands of simultaneously encoding and decoding 

information [17]. For example, imagine the folding and 

unfolding of a piece of paper is a task that requires spatial 

visualization [18]. The representation and the manipulatation of 

images mentally, as the drawing of images, allows encoding 

graphic information. Decoding is present during interpretation 

graphic information. 
 

The acquisition of this ability is not spontaneous and required a 

long and complex learning [19] but can be trained by the way of 

long or shoter intervention [20-22,14]. Visualization processes 

play keyrole in geometrical thinking [23]. The development of 

spatial visualization predicts success in mathematics 

performance [19,21,24,22,25] and can help student to construct 

efficient internal representations of problems [13]. 
 

The field of geometry in primary school mainly involves visual 

work on tangible objects, leading to technical work in micro-, 

meso- and/or macro-space [26,27], and ending up with a 

conceptualization process that enables reality to be interpreted 

(Duroisin & Demeuse, 2016) [28]. Duval (2005, p. 6) [29] 

highlights the fact that ‘of all the fields of knowledge that 

students have to enter, geometry is the one that requires the most 

comprehensive cognitive activity, requiring manual skills, 

language and observation. In geometry, one has to construct, 

reason and see, and the three are inseparable.’ It is important to 

take account of the register of representation, which is still often 

overlooked, because ‘it runs counter to normal cognitive 

functioning outside mathematics’ (Ibid., p. 5). Yet in primary 

education, the organization of teaching goals in plane geometry 

leads students to develop knowledge about the properties of 

objects in one dimension (straight lines, the relationships 

between straight lines and their properties), and then to work on 

the familiar two-dimensional shapes (squares, rectangles, 

triangles etc.), in a somewhat compartmentalised manner, 

without establishing enough links between the one-dimensional 

and two-dimensional configurations [30]. This leads to the 

conclusion, drawn by Duval and Godin (2005, p. 7) [13], that 

‘students’ relationship with the geometric figures is 

characterised by profound didactic equivocation’. There is also 

add the difficulty of students to clearly define and understand 

geometric concepts [31]. Concerning the organization of 

teaching in this respect, these authors state that ‘it comes up 

against the way the figures are perceived and interpreted outside 

mathematics. Something that is recognized from the start as a 

2D shape cannot be broken down perceptually into a network of 

1D shapes’ (p. 7). One of the challenges of teaching geometry 

will therefore be to establish these links, which are too often left 

entirely to the children, by setting them activities to ‘move from 

a visual analysis of the shapes in terms of assemblages of 

surfaces (2D shapes) to a visual analysis in terms of assemblages 

of lines (1D shapes)’ [13]. In other words, the aim will be to help 

students achieve the phenomenon of ‘insight’, stressed by 

Gestalt theory: an awareness that enables the subject to 

overcome the limitations imposed by the shape. This awareness, 

which runs counter to spontaneous processes of visual 

identification of shapes, can be practiced using dimensional 

deconstruction, which requires the development of the capacity 

to analyze figures visually [32]. It will therefore be necessary to 

develop in students the geometrically correct way to see a figure 

through activities designed for this purpose. Duval and Godin 

(2005, p. 8) [13] assert in this connection that ‘without such a 

transformation of the spontaneous and predominant way of 

seeing, all formulations of geometric properties are likely to 

seem meaningless’. This helps us to understand one of the 

difficulties experienced by students with developing the 

demonstration method [33]. As for specific activities, Mathé 

(2012) [34] proposes, as Bouleau (2001) [35] had already 

suggested, that the artefacts used by the student when 

completing or reproducing figures (materials promoting 1D 

visualization such as rulers or set squares and materials 

promoting 2D visualization such as templates or stencils) should 

be varied in order to initiate the intended perceptual change : « It 

is handling the instruments, via the analysis of figures in terms 

of units of size one or zero that the use of these instruments 

entails, that changes the way students relate to objects and may 

enable them to reconcile perceptual analysis with geometric 

analysis of figures. [...] The teacher can help students to practice 

these changes in the way of seeing objects by getting them to 

work with the instruments on exercises in which figures have to 

be completed [36]. This is similar to the point made by Duval 

and Godin (2005, p. 8) [13] that ‘it is by playing with the 

variable presented by the instruments in exercises involving 

reproducing [or completing – ed.] figures that one can overturn 

the deep-rooted and persistent predominance in students of 

perceptual analysis over geometric analysis of figures’. The first 

challenge for adopting a geometric approach is to move from 

students’ usual way of looking at a drawing to the geometrical 

view of a figure that they need to take [37,12]. In other words, 

they need to move from iconic visualization (which 

spontaneously associates a drawing with objects that have been 

seen and experienced in reality) to non-iconic visualization (in 

terms of a network of straight lines, points etc.). This is without 

doubt the hardest essential threshold students need to be helped 

across in the teaching of geometry. 
 

According to Duval and Godin (2005) [13], there are at least 

three ways to analyze a figure. The first is natural and occurs in 

non-mathematical contexts: it is perception. Perception is 

‘pregnant’:  it relies on the recognition of forms (or figural units) 

through their visual properties [38]. While this first type of 

analysis occurs fairly naturally, the other two are the types of 

analysis that we seek to develop in students through specially 

designed activities: « First, there is the knowledge of geometric 

properties that must be mobilised in response to given 

hypotheses: geometric properties must then take precedence 

over visually recognized forms in order to analyze a figure. 

Second, there is a wide range of instruments that can be used to 

reproduce or construct a figure: the analysis depends on the 

reproduction or construction procedures that the instrument 

requires [13]. These two forms of visualization, which it is 

desirable to develop in geometry, will make a gradual transition 

possible from drawing to figure (Figure 1). These authors 

emphasize that setting students activities involving reproducing 

or completing figures using various instruments (templates, 

stencils, information-bearing rulers, compasses, plastic rulers, 

squares, etc.) to analyze either (1D) figural units or 2D units will 

enable them to gradually move from ‘pregnant’ iconic 

visualization (perceptual analysis) to non-iconic visualization 

(geometric analysis). In other words, it is the activity that is set, 

or rather the constraint associated with the use of various 

instruments (2D or 1D) that determines the student’s 

relationship with the figures. 
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Figure 1: Assembly into 2D, 1D and 0D figural units. 

 

To recognize a shape, two analytical approaches can be used: 

assembly by juxtaposition (the type that occurs naturally) and 

assembly by superposition (which is less natural). In the first 

case, we observe ‘as many shapes as there are closed outlines’, 

whereas in the second case the assembly ‘visually encourages 

the extension of the lines recognized as belonging to one shape 

and not to another’ and one observes ‘closed outlines rather than 

shapes’ [13]. It is therefore important to stipulate that, quite 

naturally and according to the individual, one of these two forms 

of visualization will predominate. Changing this is not easy: it 

will require the use of specific graphic activities (such as 

extending the sides of the drawing), the use of templates or 

coloring. 
 

Another way of understanding this figure is to use dimensional 

deconstruction. As Bulf indicates (2009, p. 55) [39], this process 

makes it possible « to bring out relations between smaller figural 

units and to deduce from them certain geometric properties 

associated with deductive reasoning related in an axiomatic 

discourse ». In other words, this involves deconstructing a 

2D/2D figure, for example, into smaller figural units (1D or 

0D/2D) in order to reveal the relationships between these figural 

units [40]. This didactic activity involving the extension of 

segments is of fundamental value, in that it involves gradually 

moving from a vision of 2D figural units to one of 1D figural 

units (dimensional deconstruction), thus promoting the 

transition from surfaces to lines. The extension of the drawing’s 

lines gives it a geometric character which hitherto was not 

apparent due to its pronounced iconic character; the transition 

from iconic to non-iconic visualization is thus encouraged. Once 

the didactic work that enables the student to move to a line-based 

visualization of figures has been completed, one can then work 

on visualizing the figures on the basis of points (those at the 

intersections of the lines that are drawn): these different forms 

of visualization are of great importance for commencing the 

process of demonstration. 
 

To visualize a figure, two opposing modes of cognitive 

functioning can therefore be used: iconic visualization and non-

iconic visualization. The first relates more to the profile of the 

real object (2D vision), while the second corresponds rather to a 

series of operations that will lead to the recognition of its 

geometric properties (0D, 1D and 2D vision). As regards iconic 

visualization, Duval (2005, p. 13) [29] states that it operates 

according to ‘two levels of operations: discriminative form 

recognition and identification of objects corresponding to the 

recognized forms’ This innate visualization is what is used in 

daily life, and is based on a strong perceptual potential: one 

observes shapes, drawings and so on, and attempts to associate 

them with a known repertoire. Mithalal (2011, p. 114) [41] states 

that « the subject can only refer to the general form, and cannot 

perform operations on it without denaturing it [...]. Evidently, 

this limitation is unacceptable in geometry, as it prevents one 

from modifying a drawing in order to reveal its properties ». 
 

Consequently, iconic visualization prevents the student from 

looking at the figures in geometry in the right way and leads to 

an impasse. According to Mithalal (2011) [41], the subject’s 

perception initially focuses directly on the outline or profile of a 

figure; accordingly, anything that is outside this field is not, 

without training, perceived as potentially usable to solve the 

problem that is set. There is thus a resistance to moving away   
American J Sci Edu Re, 2023                                                         ISSN: 2835-6764                                                                                           Page: 3 of 11 



Citation: Duroisin N, Beauset R, Lucchese J (2023) Learning Geometry by The Development of Non-Iconic Spatial Visualization 

with Dimensional Deconstruction. American J Sci Edu Re: AJSER-138. 
 

from the initial perception. In other words, what will first be 

recognized as a 2D shape is not broken down or decomposed, 

without training, into a network of 1D figural units. The 

pregnanz of iconic visualization is also demonstrated by various 

experiments developed by the Gestaltists that prove that the 

stimuli implemented in a learning situation are perceived 

globally [42,43]. For the Gestaltists, learning means arranging 

and rearranging certain elements differently; it means 

discovering and developing new relationships between elements 

which were previously seen as isolated (i.e. developing the non-

iconic visualization of subjects). It thus involves solving 

problems and finding an appropriate solution by restructuring 

the elements of the situation. In this sense, the subject must play 

an active role in the learning process. To explain what happens 

during learning, the Gestaltists refer to the phenomenon of 

‘insight’, illustrated by the experiment in Figure 2. In the 

situation presented, the discovery of the solution is complicated 

by the presence of a familiar shape from which it is difficult to 

break free: the points to be connected are arranged in a square. 

To find the solution, we need to break free from this form and 

depart from the limitations it imposes. The term ‘insight’ thus 

refers to the awareness that allows the subject to leave behind 

the limitations imposed by the form (i.e. to gradually acquire 

non-iconic visualization). This exactly reflects the difficulties 

explained above regarding the transition from iconic to non-

iconic visualization. When a student is asked to solve this 

problem, he or she remains focused on the outline imposed by 

the square, making it impossible to complete the set task. This 

is due to the mode of cognitive functioning of the individual who 

is guided by the iconic visualization of the forms – the same that 

he/she uses in non-geometric contexts. 

 
 

Figure 2: The ‘Nine-dot problem’, illustrating the phenomenon of insight. 

 

A second impasse lies in the fact that iconic visualization alone 

can sometimes be misleading and is therefore unreliable: « there 

may be a conflict between the recognition of forms through their 

mere resemblance to an archetype and the identification of the 

object to which the recognized form corresponds » [29]. Thus, 

many students see a rhombus when a square is shown on its tip 

or tend to see any quadrilateral as a parallelogram. 

 

A third impasse lies in the fact that « forms are regarded as 

stable, i.e. they are not initially seen in a way that allows them 

to be transformed into other similar (or, more importantly, 

different) forms » [29]. Yet a given figure can generate another 

if, for example, one visually rearranges the forms that have been 

recognized and that characterise the initial figure. Figure 3 

illustrates this: from the same system of 1D figural units, 2D 

configurations can be obtained that vary depending on the visual 

rearrangement that is performed. 
 

Initial figure: 

 

 

 

 

System of straight lines generated: 

 

 

 

 

 

Examples of possible 2D configurations starting from the construction system: 

 

 

 

 

 

 
 

Figure 3: Differing configurations of a figure on the basis of its construction procedure. 
 

A start needs to be made on developing the non-iconic 

visualization in the fourth cycle of primary education [34] to 

organize a coherent progression to secondary education and thus 

avoid a breach of the didactic contract between these two levels 

of education. To develop primary students’ geometric 

knowledge and enable them to discover some properties of 

incidence which are essential at the outset of the discipline of 

geometry, activities based on exercises involving completing or 

reproducing figures are important; these will require students, 

by handling instruments, to look in the appropriate geometrical 

way at the ‘model’ figure to break it down into 2D, 1D and/or 

0D units (i.e. to use dimensional deconstruction). These tasks 

are nevertheless underestimated [44]. The value of these 

activities is that they make it easier to grasp the geometric 

concepts involved through a combination of discourse, 

visualization and activity and the development of visual acuity 

in the analysis of figures which is useful for demonstrating the 

validity of conjectures; in this way, they ease the student’s 

transition to secondary education. Keskessa, Perrin-Glorian and 

Delplace (2007) [45] and also Mangiante-Orsela and Perrin-  
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Glorian (2014) [8] confirm the interest of these activities on the 

visualization development. Nevertheless, several didactic 

variables play a keyrole in this activity, for exemple geometric 

instruments used [13,46]. 
 

Method 

Participants 

The experimental sample was of the casual type and consisted 

of four sixth-grade primary classes (end of cycle 4, before the 

entry into secondary education) from two separate schools. 

These schools had a room equipped with an interactive 

whiteboard (IWB), which was useful for some of the planned 

teaching sequences. One class from the first school and one class 

from the second school were the experimental groups. The 

sampling procedure was non-probabilistic: individuals were 

selected on the basis of their availability and the teachers’ 

willingness to participate in the experiment. The first two classes 

each had 20 students while the other two each had 13. Our 

sample size was therefore 66 students. The schools in which we 

conducted our experiment were two municipal primary schools 

under the control of the city of La Louvière (Belgium). The 

socio-economic indicators for these schools (assigned by the 

Federation Wallonia-Brussels under the decree of the 

Government of the Federation Wallonia-Brussels of 24 March 

2011) were 5 and 4 out of 20 respectively. The two schools’ 

socio-economic index was quite close, reflecting the 

homogeneity of the public, which on average was relatively 

disadvantaged. A request to conduct our experiment in these 

schools was submitted and agreed to by the municipal board. 
 

Materials and procedure 

The object of this study is the development of non-iconic 

visualization in students through five teaching sequences spread 

across several 50-minute periods. The complete training module 

thus corresponds to about twenty hours of lesson time. It was 

taught from early November to early February. Within the 

module, the software program GeoGebra® was used on 

interactive whiteboards (IWBs). This saves the teacher having 

to draw figures and lines on the board, with the loss of time and 

lack of precision that this can entail, and allows students to make 

hypotheses and test and invalidate or confirm them instantly. 

This is because the program makes it possible to add lines and 

delete them immediately without having to reconstruct the 

figure or prompt, but also to construct all the figures which will 

be used variously as models and prompts for the students. The 

activities set for the students also aim to get them working on 

alignments and intersections, in order to bring out properties to 

do with straight lines and points (properties of incidence, for 

example). The same teacher, using a complete methodology, 

taught the experimental treatment to both experimental groups. 

During the various sessions offered to students, several didactic 

variables were used : the types of permitted instruments 

(templates and stencils making visualization possible in 2D 

figural units, whereas plasticised rulers, ungradated paper rulers 

and compasses make visualization possible in 1D figural units), 

the enlargement or reduction of the figures to be reproduced (to 

prevent reliance on measurement or in order to see how minor 

inaccuracies in lines can become very pronounced in an 

enlarged drawing), differences of orientation (to prevent 

students from using visual strategies), the introduction of a 

‘charge’ for the use of instruments (encouraging the use of 

certain instruments rather than others), the type of prompt used 

(as this affects the knowledge that has to be deployed), and so 

on. Moreover, the work was carried out over the long term (three 

months) because, firstly, a priori analysis of students’ geometry 

lessons suggested that their non-iconic visualization was not 

really developed and, secondly, work on dimensional 

deconstruction had not been started with students in their second 

educational cycle. Running twelve sessions on this topic would 

therefore make it possible to ascertain the effects of the 

independent variable on the dependent variable. 
 

A quasi-experimental design featuring pre- and post-

experimental observations combined with a control group would 

make it possible to observe whether the experimental treatment 

had any effects on students’ performance. First, the four classes 

were set a pretest without being given any detailed explanation 

of the purpose of the experiment. The pretest exercises were 

administered in early November. Five questions were about 

dimensional deconstruction: a ‘model’ figure had to be broken 

down into 2D, 1D and/or 0D units so that it could be reproduced 

or completed.  
 

Secondly, an experimental treatment was implemented in both 

experimental groups (i.e. in both classes). The sequences were 

taught on the basis of the same precise methodology in both 

groups. The two classes were thus subjected to special 

treatment: their 33 students received 15 teaching sequences of 

150 minutes on the theme of dimensional deconstruction, led by 

the experimenter. The learning sequences are shown in Table 1. 

The other two classes (at two different locations), also 

representing 33 students, pursued the regular curriculum taught 

by the teacher: thus, they did not receive the experimental 

treatment. Any reproduction task was proposed to them during 

this period. 
 

Finally, in a third step, a posttest was taken in mid-February by 

the four classes using the same procedure and under the same 

conditions of administration as the pretest. 
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Table 1: Description of learning sequences taught to experimental groups. 
 

Order Subject of 

Lesson 

Goals (At the end of the activity, each student will be able to …) Periods 

Sequence 1 Jumbled lines 

(finding 

alignments) 

- analyze an unfamiliar plane configuration with a view to reproducing it ; 

- employ relations of incidence such as a point’s belonging to a segment, a 

point’s belonging to two segments, intersection, or alignment, as tools for 

reproducing figure drawings and understanding that these relations may be 

sufficient, i.e.relations of length do not need to be used ; 

- establish a relevant chronology of actions (lines to draw) ; 

- learn to draw precise lines ; 

- based on the chronology, show that the construction of objects may 

depend on the construction of other (intermediate) objects. 

3 x 50 

min 

Sequence 2 Introduction 

to the use of 

different 

instruments 

to complete a 

figure 

- analyze the ‘model’ figure, draw lines or segments on it that will enable 

him/her to reproduce it ; 

- use various techniques and instruments to reproduce or complete a figure 

; 

- employ relations of incidence such as a point’s belonging to a segment, a 

point’s belonging to two segments, intersection, or alignment, as tools for 

reproducing figure drawings ; 

- establish a relevant chronology of actions (lines to draw) ; 

- learn to draw precise lines. 

6 x 50 

min 

Sequence 3 The concepts of 

alignment, 

straight line 

and point 

- analyze an unfamiliar plane configuration with a view to reproducing it ; 

- employ relations of incidence such as a point’s belonging to a segment, a 

point’s belonging to two segments, intersection, or alignment, as tools for 

reproducing figure drawings ; 

- establish a relevant chronology of actions (lines to draw) ; 

- based on the chronology, show that the construction of objects may 

depend on the construction of other (intermediate) objects. 

2 x 50 

min 

Sequence 4 Completing 

figures (using 

flexible 

visualization 

to solve the 

problem) 

- identify the alignment properties of segments and the properties of 

intersection (i.e. of points) on a given figure ; 

- use the identified properties to construct straight lines and locate points ; 

- complete a prompt to complete a model figure, using the simplest method 

possible. 

2 x 50 

min 

Sequence 5 Completing 

and 

reproducing 

figures 

- analyze an unfamiliar plane configuration with a view to reproducing it ; 

- employ relations of incidence such as a point’s belonging to a segment, a 

point’s belonging to two segments, intersection, or alignment, as tools for 

reproducing figure drawings ; 

- establish a relevant chronology of actions (lines to draw) ; 

- based on the chronology, show that the construction of objects may 

depend on the construction of other (intermediate) objects ; 

- gradually reduce the laboriousness of such completion tasks. 

2 x 50 

min 

 

The chosen design also made it possible to control for the pretest 

effect. The four groups were paired, as the measures were the 

result of the same subjects passing through all the conditions of 

the independent variable. Parallel forms of questionnaires were 

also developed to avoid the problems inherent to test-retest 

reliability (pretest α = .858, posttest α = .857).  

 

This evaluation device, based on the use of pre- and posttest, 

also made it possible to calculate raw scores and relative 

improvements. For each of the two tests, numerical scores 

relating to the raw results lay between 0 and 30 points. The ten 

questions (five in the pretest and five in the posttest) were 

analyzed on the basis of a grid produced a priori (Table 2). Six 

variables were chosen. The coding of the data was dichotomous, 

as it indicated whether or not the given behaviour was displayed. 
 

Table 2: Variables for coding students’ work at pre- and posttest. 
  

1. The student has completed the exercise successfully. 

2. The student has drawn on the model. 

3. The student has shown some relevant auxiliary lines on the model. 

4. The student has shown some relevant auxiliary lines on the prompt (or in the reproduction zone). 

5. The student has shown all the relevant auxiliary lines on the model. 

6. The student has shown all the relevant auxiliary lines on the prompt (or in the reproduction zone). 
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The relative improvement was calculated using the following 

formula: (Posttest score - Pretest score) / (Maximum score - 

Pretest score) x 100. This was thus the relationship between the 

student’s actual improvement and the maximum that he/she 

could have improved. As note by D’Hainaut (1985) [47], this 

index is ‘independent of the starting level and since, at the same 

starting level, it is proportional to performance, we can consider 

that the relative improvement is proportional to what it is 

intended to measure’ (pp. 158-159). 
 

 

 

 

 

 

 

Results 

A priori analysis of the homogeneity of the two groups’ results 

at pretest 

Raw scores of overall performances at pretest and posttest were 

calculated to verify the starting level of the different groups 

(control and experimental). The performance of the Mann-

Whitney test on the two separate groups confirmed this 

homogeneity (p = 0.301): there was no difference between the 

results of the different groups in the sample. 
 

Analysis of the results relative to the performance of the 

learners 

Table 3 shows the mean relative improvements in the 

performance of the control and experimental groups. These 

means are percentages. 

 

Table 3: Mean relative improvements in overall performance for the two groups of students. 

 

 

 

 

 

 

As indicated by the data in Table 3, the two groups differed 

significantly in terms of relative improvement. The group that 

received the experimental treatment showed a much higher 

mean than the control group (p = .0002). The dispersion of the 

value of the relative improvement was greater in the control 

group than in the experimental group. 
 

In order to test students’ progress, means corresponding to the 

success rate obtained for each of the exercises in the two tests 

(pretest and posttest) were calculated for the students of the two 

groups. Wilcoxon rank tests on the raw results obtained by the 

experimental and control groups in each of the pretest and 

posttest exercises were also carried out for the questions that 

showed a strong intercorrelation (Table 4). The statistical tests 

were carried out not on the basis of the means shown in the table, 

but on the raw scores obtained by each student in each question 

in the two tests. 

 

Table 4: Wilcoxon rank tests on the pretest and posttest results of the control and experimental groups. 
 

 Control group Experimental group 

Mean 

(%) at 

pretest 

Mean 

(%) at 

Posttest 

Z Null 

hypothesis 

probability 

Mean 

(%) at 

pretest 

Mean 

(%) at 

posttest 

Z Null 

hypothesis 

probability 

Paires de 

questions 

1 6.06 10.1 -1.713 .087 9.09 100 -5.181 .000 

2 13.13 21.21 -1.546 .122 17.68 94.95 -4.936 .000 

3 16.16 14.65 -2.287 .774 18.69 95.45 -5.002 .000 

4 8.08 7.07 -.832 .405 8.08 95.96 -5.117 .000 

5 2.02 5.05 -1.508 .132 3.54 94.95 -5.232 .000 
 

The results of the Wilcoxon tests indicate that there are 

significant differences in performance between pretest and 

posttest in favour of the experimental group. The performance 

differences are very significant in the experimental group for all 

posttest exercises (p = .000), by contrast with the control group’s 

performance differences, which are not significant (p ranging 

from 0.087 to 0.774). 
 

Study of some of the learners’ work 

This section presents some of the work done by students at 

posttest. One question is described here to illustrate the 

difference between the work by learners from the control and 

experimental groups. The question (Figure 4) illustrates a figure 

completion exercises (i.e. a prompt is provided, and the figure 

has to be completed). Whether the exercise involved 

reproducing or completing figures, auxiliary lines (such as 

alignments, diagonals or medians) had to be shown by the 

student in order to complete the exercise successfully. The use 

of such lines also showed that the student was gradually moving 

to a non-iconic visualization type. 

 

 

 

 

 

 

 

 

 N Mean (%) Standard deviation 

Experimental group 

Experimental group 33 95.95 9.328 

Control group 33 1.98 14.370 
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Figure 4: Work by students from the control and experimental groups for another question at posttest. 
 

The Figure 4 illustrates the differences in work between learners 

from the control and experimental groups for question at 

posttest. The students from the control group appeared to use 

neither the model nor the prompt to solve the exercise, whereas 

the students from the experimental group drew multiple lines on 

the model and on the prompt (Figure 4). 
 

After analyzing the work of all students on this question, the 

conclusion was clear: only the students from the experimental 

group drew relevant auxiliary lines on the model and prompt. 

No student from the control group did so. In addition, it is 

notable that only 10 students from the control group completed 

the exercise successfully, against 27 from the experimental 

group (Figure 5). We can therefore state that the control group 

students had not developed their non-iconic visualization, unlike 

the students in the experimental group, in whom this skill was 

in the process of development. 

 

 
 

Figure 5: Students’ behaviour defined according to six variables (posttest question). 

 

Discussion  

The purpose of this study was to observe whether learning 

sequences that offer problem-solving activities in geometry 

requiring the use of dimensional deconstruction would allow 

students to develop their visual acuity in the analysis of figures. 

The hypothesis was that a didactic transposition focusing on the 

principle of dimensional deconstruction would allow students in 

the fourth cycle of primary education gradually to move from an 

iconic to a non-iconic type of visualization. This transition 

requires the constant switching of attention between surfaces, 

lines and points. Being able to adopt ‘the right way of seeing 

things in geometry’ is one of the purposes of the discipline, both 

in order to build the knowledge and skills required at primary 

level (i.e. the identification of geometric properties such as 

properties of incidence which, although they seem quite simple 

at first glance, are rarely mastered by students, cf. Mangiante-

Orsola & Perrin-Glorian, 2014) [8] and to facilitate the transition 

to the theoretical geometric approach in secondary education 

(i.e. the use of different ways of looking at things introduces 

them to the process of demonstration). 

 

In order to test the hypothesis, a quasi-experimental design with 

pre- and post-experimental observations combined with a 

control group was used. The independent variable in the study 

was the development of a flexible approach in students in the 

analysis of the figures, while the dependent variable, which was 

the subject of observations, concerned students’ performance. 

 

First of all, all the students’ results at pretest make it clear that 

learners’ non-iconic visualization in their final grade of primary 

education is weak or non-existent. Very few students used 

auxiliary lines to enable them to complete or reproduce a figure. 

In addition, at pretest it was observed that students focused 

constantly on the closed outlines of the figures [48,49,50]. They 

did not work spontaneously on the model, because they were 

unaware that auxiliary lines could be drawn that would help 

them to complete or reproduce the figures. We can therefore 

confirm that ‘[...] acquiring the knowledge needed to analyse a 

geometric figure is currently left entirely up to the students’ 

(Duval et al., 2005, p. 87) [48]. Moreover, analysis of the 

geometry classes of the teachers who agreed to participate in the 

experiment confirmed the finding of Duval and Godin (2005)  
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[13] that, in primary education, the organisation of teaching 

goals in plane geometry helps students to develop knowledge of 

the properties of one-dimensional objects (straight lines, the 

relationships between lines and the properties of lines) and then 

to work on familiar two dimensional forms (squares, rectangles, 

triangles, etc.), in a dissociated manner, without creating enough 

links between the configurations in one dimension and those in 

two dimensions. 

 

At the end of the study, the statistical analysis performed 

revealed the beneficial effect of the experimental treatment on 

the learners’ performance. The overall performance of the 

students in the control groups did not improve, whereas that of 

the students in the experimental groups varied very significantly 

between the results at pretest and posttest, for each exercise 

performed. The important point here is that, as well as 

facilitating the primary-secondary transition in geometry, the 

experimental treatment also allowed students to significantly 

improve their performance in solving exercises of the kind 

found in the external certificative tests at the end of the sixth 

primary grade – an argument in favour of the development of 

non-iconic visualization in students. This study therefore 

reinforces the idea that ‘We cannot expect that students, who 

understandably continue with the cognitive functioning 

associated with iconic visualization, will be able to start 

understanding statements and discursive processes that rely on 

non-iconic visualization and that require the visual habit of 

dimensional deconstruction of forms. Hence the importance of 

lengthy, specific work to develop these ways of looking at things 

that are so specific to geometry’ [29]. 

 

Conclusion  

Through this study, it appears important to develop non-iconic 

visualization in primary students because it does not happen 

naturally. It is possible by the way of adapted teaching/learning 

(problem situations, proximal zone of development, scaffolding 

and spiral teaching, etc.), given that ‘completing or reproducing 

geometric figures allows the knowledge to be built up that is 

required in primary school, but also enables a relationship to be 

developed with geometry and the use of instruments that is more 

consistent with what is expected in secondary school’ [51]. After 

three months of experimental treatment, it is noticeable that 

students’ progress is considerable. Such activities may therefore 

be introduced in classrooms. 
 

The intention of this approach is to facilitate the transition from 

primary to secondary education and reduce the breach of the 

didactic contract between these two levels. Moreover, 

developping spatial visualization is important to facilitate 

mathematics learning because spatial visualization and 

mathematics performance are linked [22,29]. 
 

At the very least, this requires teachers to be aware of the issues 

and objectives of geometry (the importance and usefulness of 

acquiring non-iconic visualization), and to have received 

training in teaching this type of spatial visualization. 
 

However, even if research like this is interesting for provide 

tools to guide the practice of teachers, to hope for a larger change 

in teaching practices, it is essential that the legal prescriptions 

(teaching programs) clearly announce recommendations on this 

subject. 
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