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I. Introduction 
 

A. Context and Relevance 

  Introducing unmanned aerial vehicles (UAVs) marks a 

significant turning point in technology and its application across 

diverse sectors. Their versatility and flexibility have opened new 

frontiers in surveillance and logistics, especially in wireless 

communication networks. UAVs have emerged as a dynamic 

solution to the challenges posed by the need for robust and 

expansive communication networks [1], particularly in remote 

or disaster-hit areas where traditional infrastructure is infeasible 

or compromised. 
 

  One of the critical areas where UAVs have shown immense 

potential is in augmenting existing communication networks. 

UAVs can provide enhanced coverage by acting as aerial base 

stations or relays, especially in densely populated urban areas or 

regions with complex topographies. Their ability to dynamically 

reposition allows for adaptive network coverage, catering to 

fluctuating demand or changing environmental conditions. 
 

  However, the effectiveness of UAVs in communication roles 

heavily relies on two critical aspects: trajectory optimization and 

power management. The trajectory of a UAV determines its 

coverage area, signal quality, and the duration of service it can 

provide. Optimizing this trajectory is not just about finding the 

shortest path or the best vantage point; it involves a complex 

calculus that balances multiple factors. These include 

maximizing the coverage area, maintaining optimal signal 

strength, ensuring line-of-sight connectivity, and avoiding 

obstacles. 

 

  Furthermore, power management is an equally critical 

component. UAVs are constrained by their battery life, 

impacting their operational duration and effectiveness. Efficient 

power management ensures that UAVs can perform their tasks 

for extended periods, thereby enhancing the reliability and 

stability of the communication networks they support. 
 

  In summary, deploying UAVs in communication networks 

presents a promising solution to several modern challenges. 

However, realizing their potential hinges on effectively 

addressing the intricacies of UAV trajectory optimization and 

power management. This maximizes their coverage and 

efficiency and extends their operational endurance, thus making 

them more viable and practical in diverse applications. This 

paper delves into these challenges, offering new insights and 

solutions in UAV trajectory optimization for enhanced 

communication networks. 
 

B. Challenges in UAV Trajectory Optimization 

  Optimizing unmanned aerial vehicle (UAV) trajectory presents 

many intricate and multifaceted challenges. Central to these 

challenges is the non-convex nature of the optimization 

problems inherent in UAV operations. This non-convexity 

stems from the complex interplay of various factors, such as the 

UAVs’ flight dynamics, environmental constraints, and the 

mission’s objectives, whether for surveillance, delivery, or 

communication. 
 

  One of the primary hurdles in UAV trajectory optimization is 

balancing energy consumption against adequate communication 

coverage judiciously. UAVs, typically powered by batteries, 

have a limited operational lifespan determined by their energy 

reserves. This limitation imposes a stringent constraint on how 

long a UAV can stay airborne and operational, directly 

influencing the scope and efficiency of its mission. The 

challenge, therefore, lies in devising flight paths that minimize  
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energy expenditure while maximizing the area and quality of 

communication coverage. 
 

  This energy-coverage trade-off is further complicated by 

factors such as varying payload weights, changing weather 

conditions, and potential obstacles in the flight path. These 

elements can significantly impact the UAV’s energy 

consumption and operational efficiency. For instance, avoiding 

obstacles or compensating for strong winds requires additional 

power, reducing the UAV’s working time. 
 

  Moreover, the optimization process must consider the dynamic 

nature of communication demands. In significant public events 

or disaster response scenarios, the demand for communication 

coverage can change rapidly, spatially, and temporally. The 

UAV’s trajectory must be adaptable in real-time to these 

changing requirements, a challenge that demands sophisticated 

and responsive computational strategies. 
 

  The complexity of these challenges necessitates advanced 

computational approaches that can accurately model the UAVs’ 

flight dynamics, predict energy consumption, and dynamically 

adapt to changing conditions and requirements. This paper 

addresses these challenges by exploring and developing such 

computational strategies, focusing on optimizing UAV 

trajectories for enhanced communication coverage in various 

operational contexts. 
 

C. Literature Gap and Research Motivation 

  Recent advancements in wireless communication have 

underscored the significance of unmanned aerial vehicles 

(UAVs) in enhancing network performance, particularly in 5G 

and beyond networks. As aerial base stations, UAVs offer 

unique advantages like dynamic deployment, on-demand 

coverage, line-of-sight, and solid connectivity. However, the 

optimal placement of UAVs in such networks is a complex 

challenge involving multi-dimensional decision-making to 

ensure efficient coverage and communication performance [2-

4]. 
 

  Several studies have explored various aspects of UAV 

deployment, focusing on issues like trajectory optimization, 

interference management, energy efficiency, and quality-of-

service (QoS) enhancement. In [5], a coordinated multi-UAV 

strategy for optimizing coverage area in the presence of co-

channel interference was proposed. [6] provided a 

comprehensive survey on UAV placement optimization, 

highlighting key design issues and solution techniques in UAV-

assisted wireless networks. 
 

  Despite these advancements, there remains a significant gap in 

addressing the non-convex nature of UAV placement problems. 

The complexity of these problems escalates with the inclusion 

of factors like UAV mobility, user distribution, and dynamic 

network conditions. This research is motivated by the need to 

develop and compare advanced computational methods, 

including iterative optimization techniques and machine 

learning approaches, to solve these non-convex optimization 

problems more efficiently. The goal is to enhance the efficacy 

and efficiency of UAV trajectory planning and power 

management, thus improving the overall performance of 5G and 

beyond wireless networks. 
 

  This study aims to address these gaps and explore the potential 

of machine learning in simplifying and accelerating the UAV 

deployment process. By comparing traditional optimization 

techniques with modern machine learning approaches, we seek 

to offer a new perspective on UAV placement optimization, 

opening avenues for future research and practical 

implementations in advanced wireless networks. 
 

  The comprehensive examination of UAV applications in 

wireless networks by [7] underscores the diverse applications of 

UAVs and presents open problems that require innovative 

computational solutions, including machine learning 

techniques. [8] explores the potential of UAVs in enhancing 

vertical backhaul/fronthaul connectivity in 5G+ wireless 

networks, illustrating the integration of UAVs with existing 

network structures. The authors in [9] delve into the intricacies 

of UAV communications, particularly for 5G and beyond, 

providing a detailed analysis of potential applications and 

challenges [10] focus on efficiently placing UAVs as aerial base 

stations in cellular networks, emphasizing the importance of 3D 

positioning. Lastly, [11] conducted an extensive survey on UAV 

cellular communications, covering various dimensions, 

including practical aspects, standardization, regulation, and 

security challenges. 
 

  By building upon these studies, this paper seeks to advance the 

field of UAV deployment in wireless networks, using machine 

learning and advanced computational methods to address 

current challenges and unlock new potentials for UAV 

applications in complex network environments. 
 

D. Objectives and Scope 

  The central aim of this research is to fulfill two main 

objectives. Firstly, it comprehensively analyzes various iterative 

methods, focusing on the Gradient Descent (GD) technique for 

optimizing unmanned aerial vehicle (UAV) trajectories. This 

comparison is directed toward identifying the most effective 

method for trajectory optimization in terms of coverage 

efficiency and computational performance. 
 

  Secondly, the study aspires to delve into machine learning, 

investigating its potential and applicability in optimizing UAV 

trajectories. The exploration of machine learning models in this 

context is motivated by the need for innovative solutions that 

can surpass traditional methods in efficiency and effectiveness. 
 

  The scope of this paper is primarily centered on optimizing 

UAV trajectories to enhance communication coverage. The 

emphasis is placed on addressing the computational challenges 

inherent in this optimization process. The research aims to 

contribute valuable insights and advancements in UAV-assisted 

communication networks by exploring traditional iterative 

approaches and cutting-edge machine-learning techniques. The 

ultimate goal is to improve UAV networks’ overall performance 

and reliability, facilitating better communication coverage in 

various operational scenarios. 
 

E. Contribution and Structure of the Paper 

  This paper makes a significant contribution to the field of UAV 

trajectory optimization by introducing innovative optimization 

models and offering a detailed comparative analysis of both 

traditional and contemporary computational methods. A key 

highlight of our work is the pioneering exploration of machine 

learning techniques for UAV trajectory optimization, marking a 

new direction in this research area. 
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  The structure of the paper is meticulously designed to provide 

a clear and coherent presentation of our research. It begins with 

an introduction that sets the stage for the study, followed by a 

detailed literature review that contextualizes our work within the 

existing body of research. The methodology section elaborates 

on the techniques and approaches employed in our study, 

including the specifics of the computational models and the 

machine learning framework. 
 

  Subsequent sections present our findings and analyses, where 

we critically examine the results obtained from both the 

traditional optimization methods and the machine learning 

model. This comparative analysis is central to understanding the 

efficacy and potential of the proposed approaches in UAV 

trajectory optimization. 
 

  The discussion section delves into the implications of our 

findings, providing insights into the practical applications and 

limitations of the methods studied. Here, we also explore the 

broader impact of our research on UAV-assisted 

communications and potential future developments. 
 

  Finally, the paper concludes with a summary of our key 

contributions, reflecting on the study’s outcomes and suggesting 

avenues for future research. This structured approach ensures 

that the paper is informative and accessible to readers, providing 

a comprehensive overview of our study in UAV trajectory 

optimization. 
 

II. Gradient Descent Method for UAV Network 

Optimization 
 

This section details an optimization method using gradient 

descent for a UAV network. It focuses on enhancing 

communication efficiency through strategic UAV placement 

and power management. 
 

A. Initial Setup 

  This UAV network optimization study focuses on downlink 

transmissions between UAVs and ground-based stations (BSs). 

Each UAV and BS have an omnidirectional antenna for 

effective communication. The UAVs are strategically 

positioned in three-dimensional space, with their locations 

specified for various time slots within a predetermined 

operational period. This period is equally divided into intervals 

for systematic analysis. The initial setup was inspired by the 

[12]. 
 

  Figure 1 illustrates the initial setup of a UAV communication 

network, depicting four UAVs (unmanned aerial vehicles. 

 

 
 

Figure 1: The initial setup of a UAV communication network. 

 

  They are positioned around a central base station. Each UAV 

is represented by a different color, indicating unique flight paths 

and communication links. The diagram in Figure 1. shows 

uplink and downlink communication channels, emphasizing the 

complexity and dynamics of UAV-based communication 

systems. 
 

  We consider the number of  Base stations,  𝐾 =  4;  fixed base 

station location, 𝑠 =  ((250, −250, 0), (−250, 250, 0),
(250, −250, 0), (250, 250, 0)) minimum safe altitude, Hmin = 

100, maximum safe altitude, Hmax = 300, level flight speed, VL = 

20m/s, vertical ascending level, VA = 5, vertical descending 

speed, VD = 5m/s, the minimum safe distance between any two 

UAVs is dmin = 0, Maximum Power, Pmax = 30, T = 300, M = 30, 

G0 = −50, B = 10, N0 = −160, the tolerance rate, ϵ = 0.001. 

 

  The model sets UAVs' altitude constraints (minimum 𝐻𝑚𝑖𝑛 and 

maximum 𝐻𝑚𝑎𝑥 limits), ensuring safe operations. Additionally, 

spatial boundaries are defined to regulate UAV movement, 

considering their horizontal and vertical flight speeds. These 

constraints are crucial to simulating realistic UAV trajectories, 

considering their dynamic flight characteristics. 
 

  Variables involved include the 3D positions (q[:,k,n]) and 

power levels (p[k,n]) of each UAV, denoted for K UAVs across 

N time slots. The model also imposes power constraints, 

ensuring the power levels remain within a maximum allowable 

range (Pmax). 
 

  This section lays the groundwork for the subsequent 

optimization process to enhance communication efficiency 

within the UAV network. For detailed mathematical equations  
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and formulations, readers are directed to the referenced 

literature [13]. 

 

 

 

 

B. Objective Function 

The primary aim of this optimization study is to enhance the 

secrecy rate of the UAV network. This involves optimizing 

UAVs’ positions and power levels to maximize the 

communication rate with ground-based stations. The secrecy 

rate, denoted as R [14], is formulated as follows: 
 

 

 

                                                                                                                                                                            (1) 

 

 

 
 

 

  Here, γ represents a constant determined by channel properties, 

while s[:,k] indicates the location of the k-th base station. The 

equation aims to find the optimal configuration that yields the 

highest secrecy rate across all UAVs over the network operation 

period. 
 

C. Variables 

  This section introduces key variables for UAV optimization. 

The 3D position of each UAV at specific time slots is q[:,k,n] ∈ 

R3, and its corresponding power level by p[k,n] ∈ R. The UAV 

count is denoted by K, and time slots by N. 
 

D. Constraints 

  The model enforces several constraints on UAV operations: 

- Altitude: Each UAV’s altitude must remain between Hmin and 

Hmax 

- Spatial Boundaries: UAV positions should stay within 

predefined spatial limits. 

- Power: UAV power levels are bounded between 0 and Pmax. 

These variables and constraints form the foundation of the 

optimization framework, ensuring realistic and safe UAV 

operation within the designated parameters. 

 

E. Optimization Method 

  Our approach utilizes the gradient descent algorithm to 

optimize UAV positions and power levels iteratively. This 

technique involves calculating the gradient of the objective 

function (secrecy rate) concerning both UAV positions and 

power levels. The updates are made by adjusting these variables 

to maximize the objective function. A learning rate, denoted as 

α, governs the adjustments. This process is iterative, with the 

algorithm updating positions and power levels until 

convergence is reached, determined by a predefined tolerance 

level. 
 

F. Gradient Descent Algorithm 

  The gradient descent algorithm iteratively updates UAV 

positions and power levels. This process, as shown in Algorithm 

1, involves calculating the gradients of the secrecy rate function 

concerning position and power variables, followed by their 

incremental adjustment. 
 

Algorithm 1: The summarized version algorithm for Gradient 

Descent 

Initialization: Define initial positions and power levels for 

UAVs. Iteration: At each step, calculate gradients of the 

secrecy rate concerning positions and power levels. Update: 

Adjust UAV positions and power levels based on gradients and 

learning rate (alpha). 
 

Convergence Check: Repeat the process until the difference in 

secrecy rate between iterations is less than a set tolerance. 

Output: Final optimized UAV positions and power levels. 
 

  The Gradient Descent Algorithm 2 iteratively adjusts UAV 

positions and power levels to maximize the secrecy rate in UAV 

networks. It begins with initial settings for positions and power, 

then gradually updates these variables in the direction that 

increases the secrecy rate the most. This update is controlled by 

a dynamic learning rate that adapts based on the current rate, 

ensuring the algorithm remains sensitive to the solution’s 

progress. The process repeats until the change in secrecy rate 

between iterations is below a defined threshold, signifying 

convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

American J Sci Edu Re, 2024                                                         ISSN: 2835-6764                                                                                           Page: 4 of 10 



 

Citation: Islam TN, Lashhab F, Ahmed I (2024) Optimization of UAV Deployment for Enhanced Communication Coverage. 

American J Sci Edu Re: AJSER-151. 
 

G. Results and Visualization 

  Post-optimization, the results showcase the effective 

placement of UAVs in the network. A 3D visualization depicts 

UAV positions relative to base stations, demonstrating the 

optimization’s impact on network efficiency. Using the Gradient 

Descent Method, we have successfully calculated the cases we 

could not solve with the ECOS method, where the problem is 

treated as a SOCP problem.  

  Here, observing the results, we can find from Figure 2 that the 

location change, ∆q, is proportional to the initial power 

assigned. This is because we gave alpha=0.1/Rr, where the 

secrecy rate is logarithmically proportional to the power value. 
 

  Inspecting the two charts, we can see that even though gradient 

descent takes less iteration, the iteration number is more 

extended since it deals with 16 parameters, where the ECOS-

SOCP method does not differentiate while maximizing. 

 

 
Figure 2: Optimized location with Gradient Descent. 

 

Figure 3: Optimized power after Gradient Descent. 

 

So, we optimized the cases with gradient descent, but we could not do it with the help of ECOS-SOCP. 
 

H. Analysis 

This section concludes with an analysis of the algorithm’s performance, including its limitations and potential areas for 

improvement. We used 1000 random data points to analyze the solving method of the Algorithm: 

• We used the ECOS method, with 16 variables and 26 constraints in the problem. This is a DPP (disciplined parameterized 

programming) problem. 
 

 iteration required Time Required 

Mean 20 488 

Std 8.09 210.42 

Minimum 3 41.00 

25% Percentile 14 313.50 

50% Percentile 21 482.00 

75% Percentile 29 699.00 

Maximum 29 872.00 
 

Table I: Statistics of Gradient Descent Method. 
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Figure 4: UAV locations optimized with ECOS-SOCP (lighter colors are the initial location, and darker colors are the final 

locations). 

 

Figure 5: Secrecy Rate Observation of ECOS-SOCP method. 

 

- We inspect the initial location and final location of one of the experiments in Figure: UAV locations: 

- We observe the (Rr1-Rr)/Rr value for the ECOS method for the Figure 1 simulation. 

 

  Figure 5 illustrates the performance of secrecy rate ratios over 

a series of iterations. The graph fluctuates significantly across 

iterations, suggesting a non-steady convergence process in the 

context of secrecy rate optimization. This could indicate 

variability in the algorithm’s performance or sensitivity to initial 

conditions and parameters. 

 

  After analysis, we found 715 points with feasible solutions and 

recorded the total time to reach the final solution and the total 

iteration required. For 715 points, the statistics of total iteration 

and total time are mentioned in Table II: 

  Figure 6 displays the progression of convergence ratios over 

iterations for seven different sample cases using the gradient 

descent algorithm. The convergence ratio, likely a measure of 

how close the algorithm is to its optimization goal decreases 

across iterations, suggesting improvement in the solution. Each 

sample case, represented by a different color and symbol, shows 

a trend where the ratio decreases as the number of iterations 

increases, indicating that the gradient descent is effectively 

refining the variables toward the desired outcome. This type of 

graph is often used to validate the efficiency and reliability of 

optimization algorithms like gradient descent. 

 

 iteration required Time Required 

Mean 143 38.01 

Std 151 40.39 

Minimum 2 0.00 

25% Percentile 47 12.00 

50% Percentile 98 26.00 

75% Percentile 182 48.25 

Maximim 1464 382.00 

 

Table II: Statistics of The ECOS Method. 
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Figure 6: Gradient Descent Convergence Result. 
 

Limitation of Gradient Descent Algorithm: When we 

observed the differential values of the locations, we found the 

values to be so small that they could not significantly affect the 

trajectory value. Thus, it seems like the values are not changing 

as the iterations progress, so it was tough to reach the solution 

where it converges with the gradient descent algorithm. 

However, the advantage of the gradient descent method was that 

it was faster, and we were not required to solve the equations for 

every iteration. 
 

III. Machine Learning Algorithm 
 

  We collected the data from the 1000 sample points, solved 

them using the ECOS and Gradient Descent methods, and 

collected the initial location data, power data, and secrecy rates. 

Then, we designed a regression that takes the initial power and 

location values and outputs the secrecy rate. 
 

  We find two regression SVR [15] and a machine learning 

model consisting of one fully connected layer with an SVM 

optimizer working with MAE of 0.20 and 0.19, respectively.  
 

  Since both optimization methods took significant time to 

converge, using a machine learning model helps us reduce the 

time for each case and new values. Instead of doing the 

optimization, we can rely on the machine learning model to get 

the maximum secrecy rate.  
 

  The mean inference time of the linear regression model is 

0.0369 s, much less than the two optimization methods’ mean 

convergence time, 32 seconds for the ECOS-SOCP method and 

488 seconds for the Gradient Descent method. 
 

  Figure 8 shows a flowchart delineating the optimization 

process for UAV location and power for maximum secrecy rate. 

The process begins with inputting initial locations and power 

values, followed by an attempt to optimize using the (ECOS) 

SOCP method. If SOCP can solve it, the output is an optimized 

location, power, and maximum secrecy rate. Otherwise, the 

Gradient Descent method is applied, leading to a similar 

optimized output. This figure underscores the decision-making 

process in selecting the appropriate optimization technique 

based on the problem’s solvability by SOCP. 
 

  The machine learning pipeline depicted in Figure 7 involves 

several critical steps, from input data split into training and 

testing datasets. The data undergoes preprocessing, including 

normalization, to ensure it’s in a suitable format for model 

building. Afterward, the model is trained and tuned to optimize 

performance. Once the model is finalized, it is evaluated using 

metrics such as RMSE, MAE, and R2 to assess its accuracy. The 

final step in the pipeline is the prediction stage, where the model 

applies what it has learned to make predictions on new, unseen 

data. 
 

  We have considered 1000 randomized points for the training 

method, of which 715 could be solved by the ECOS-SOCP 

method. The rest of the cases were optimized by the Gradient 

Descent Method; we later proceeded to fit the optimal secrecy 

rate and the initial power and location into the machine learning 

pipeline for fast interference for further cases. 

 

  In the machine learning pipeline, we have used 20% of the 

randomly sampled data of 1000 points as a test set, and the rest 

of the 80% data is used as a train set. 

 

  For the Normalization process of Data, we have first min- max 

scalared the location data ranging from -250 to 250. Later, we 

have separately min-max scalared the power input data, which 

runs from 0 to 30. In this way, we got significant features for the 

training process. 

 

  Prediction accuracy is an important aspect when evaluating the 

performance of the UAV model. The evaluation metric is the 

performance measure. It shows how much error the UAV model 

typically makes in its predictions. Here, we’ll discuss standard 

metrics for evaluating the proposed machine learning 

algorithms. Three metrics are used to test and evaluate the 

performance of the UAV model: root mean square error 

(RMSE), mean absolute error (MAE), and correlation 

coefficient (R2). These evaluation matrices measure the distance 

between the vector of predictions ypred and the vector of actual 

values yact. It was calculated as follows: 
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Figure 7: Machine Learning Pipeline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Optimization process for UAV location and power for maximum secrecy rate. 

 

                                                                                                                                                    

 

                                                                                                                                               (2)           (2) 

 

 

 

                                

                                                                                                                                              (3)             (3) 

 

 

 

                                                                                 (4) 

 

 

 

 

 

 

 

𝑅𝑀𝑆𝐸(𝑦𝑎𝑐𝑡 , 𝑦𝑝𝑟𝑒𝑑) = √
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑(𝑦𝑎𝑐𝑡 − 𝑦𝑝𝑟𝑒𝑑)
2
 

𝑀𝐴𝐸(𝑦𝑎𝑐𝑡 , 𝑦𝑝𝑟𝑒𝑑) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

∑|𝑦𝑎𝑐𝑡 − 𝑦𝑝𝑟𝑒𝑑| 

𝑅2 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√ ∑(𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2
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Figure 9: Machine Learning Model Performance. 

 

yact = actual values; 

ypred = predicted values; 

nsamples = is the number of instances in the database; 

R2 = correlation coefficient; 

xi = values of the x-variable (features input) in a database; x_ = mean of the values of the x-variable (features input) in the 

database;Type equation here. 
yi = values of the y-variable in a database; 

y_ = mean of the values of the y-variable in a database. 
 

  Even though the RMSE in the equation is generally the 

preferred evaluation metric for regression machine learning 

algorithms, the RMSE is preferred. The evaluation errors are 

first squared before averaging, which presents a high penalty for 

significant evaluation errors. We may use other evaluation 

matrices in some contexts, such as Mean Absolute Error MAE 

and the correlation coefficient R2. The MAE is a linear 

evaluation metric in which all the individual differences are 

weighted equally. It is unsuitable for a database where we must 

consider the outliers. Our paper [16] presents a novel model for 

energy-efficient thermal comfort in smart buildings, 

significantly reducing energy usage while enhancing occupant 

comfort. Employing machine learning techniques, we 

accurately predict thermal preferences, contributing to smarter 

and more sustainable energy management in commercial 

buildings. 
 

  Figure 9 demonstrates the performance of different machine 

learning models, comparing their accuracy metrics, such as 

RMSE (Root Mean Square Error), R2 Score, and MAE (Mean 

Absolute Error). The models include ElasticNet, Lasso 

Regression, Tweedie Regressor, Orthogonal Matching Pursuit, 

SGDRegressor, SVM Regressor, Linear Regression 

implemented with TensorFlow, Bayesian Ridge Regression, 

Ridge Regression, and a Sklearn version of Linear Regression. 

Each model’s performance is evaluated to determine which has 

the lowest prediction error and the highest prediction accuracy 

for the task at hand. The visual representation allows for a clear 

comparison, highlighting which models perform better 

according to the respective error and score indicators. 
 

IV. Conclusion 
 

  This paper investigated two methods for solving multi-variable 

optimization problems in UAV networks, focusing on 

maximizing the secrecy rate. First, we approached the problem 

with a convex formulation using the ECOS-SOCP method but 

faced limitations. Consequently, we implemented a gradient 

descent algorithm with a variable learning rate (dynamic) for 

greater flexibility. Despite longer optimization times for both 

methods, we created a machine-learning pipeline. This resulted 

in the Linear Regression model outperforming others in 

predicting maximum secrecy rates from the best-performing 

model among the ten models tested. 
 

Result Statement: This study effectively utilizes convex 

optimization and gradient descent strategies to improve UAV 

communication networks' secrecy rates. Additionally, it 

demonstrates the potential of machine learning algorithms in 

predicting optimal UAV configurations for secure 

communications. 
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