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Introduction 

Melanoma is an aggressive form of skin cancer characterized by 

the malignant transformation of melanocytes. While it 

constitutes only about 1% of skin cancer cases, it is the leading 

cause of skin cancer-related deaths [1]. This discrepancy 

highlights the need for better preventative measures and 

diagnostic strategies. In 2022, the United States recorded 

approximately 100,000 new cases and 7,650 deaths due to 

invasive melanoma, revealing the substantial impact of this 

disease on public health [1].  
 

Melanoma is particularly prevalent among older adults with 

lighter skin, individuals with a history of extensive sun 

exposure, and those with a genetic predisposition to the disease. 

However, it does not exclusively affect this demographic; 

individuals of all ages and skin types can develop melanoma, 

often with more challenging detection and outcomes in those 

with darker skin tones. Unlike in lighter-skinned individuals, 

melanoma in skin of color (SOC) is not as commonly linked to 

sun exposure and often manifests in sun-protected areas like the 

palms and soles, where melanoma is less suspected and often 

diagnosed at later stages [1]. This highlights the importance of 

considering diverse clinical presentations and risk factors when 

screening for melanoma across different population groups.  

 

The integration of deep learning with dermoscopic imaging 

presents substantial opportunities for advancements in 

melanoma detection and diagnosis. Dermoscopic imaging, 

which allows for a detailed examination of skin lesions that are 

not visible to the naked eye, is instrumental in identifying 

melanoma at its earliest and most treatable stages. By 

incorporating deep learning algorithms, these images can be 

analyzed with greater precision and consistency, reducing the 

subjectivity associated with human analysis [2]. This also holds 

the potential to revolutionize the speed and reliability with 

which melanoma is identified, thereby improving outcomes and 

reducing mortality rates associated with the disease.  
 

This narrative literature review aims to comprehensively 

explore the latest advancements in the diagnosis and 

management of melanoma, with a particular focus on the 

integration of deep learning with dermoscopic imaging. By 

examining the effectiveness of these technologies and strategies 

across diverse demographic groups, the review highlights 

critical areas for future research and potential improvements in 

clinical practices. Additionally, it assesses the impact of 

technological innovations on the accuracy of melanoma 

detection, especially in early stages where intervention is most 

effective. The review explores the challenges and successes of 

implementing these technologies in real-world settings, 

considers the ethical implications of automated diagnostics, and  
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Abstract  
 

The integration of deep learning with dermoscopic imaging presents a promising advancement in the early detection and 

diagnosis of melanoma, a deadly form of skin cancer. This review synthesizes the current literature on the application of AI-

driven deep learning algorithms to dermoscopic images, highlighting significant improvements in detection accuracy and 

diagnostic efficiency. Key areas of focus include the technical intricacies of model training, emphasizing the critical role of 

diverse and extensive datasets to enhance algorithm robustness and generalizability. The review also addresses the challenges 

inherent in the interpretability of AI decisions, which is crucial for clinical acceptance and trust. Additionally, the potential of 

these technologies to reduce diagnostic errors and improve patient outcomes is examined. The integration of deep learning 

systems into clinical workflows is discussed, considering the operational and ethical implications. Future research directions 

are identified, such as the development of more transparent AI models, the creation of standardized evaluation metrics, and the 

exploration of hybrid models combining deep learning with traditional diagnostic methods. By providing a comprehensive 

analysis of these aspects, this review aims to guide future research and facilitate the adoption of deep learning technologies in 

clinical dermatology for enhanced melanoma detection. 
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discusses the potential for these tools to reduce disparities in 

healthcare outcomes. Ultimately, the review aims to provide a 

detailed analysis that informs both current and future approaches 

to deep learning in melanoma detection, allowing for more 

personalized, effective, and equitable treatment options. 
 

Role of Dermoscopy in Melanoma Diagnosis 

Dermoscopy is a diagnostic technique that utilizes a 

dermatoscope to closely examine and evaluate suspicious 

lesions. This method is a critical tool in enhancing the accuracy 

of skin diagnoses and effectively differentiating between 

melanomas, dysplastic lesions, and other skin cancers (e.g., 

basal cell carcinoma, squamous cell carcinoma) [3]. Through 

magnification and illumination, dermoscopy allows clinicians to 

observe subsurface skin structures and patterns that are 

otherwise not visible to the naked eye. Established dermoscopic 

criteria and key pathological features, such as the ABCDE’s of 

melanoma, provide guidance for clinicians in determining 

possible malignancy of skin lesions [4]. Given its non-invasive 

nature and ability to provide more detailed visualizations than 

the naked eye, the use of dermatoscopes has expanded beyond 

the evaluation of skin lesions. This versatile tool is now 

frequently used to examine a variety of dermatological 

conditions affecting the skin, hair, scalp, and nails.  
 

Challenges in Early Detection 

Although dermoscopy has revolutionized skin checks, it still has 

its limitations. There is inter-observer variability, where 

different clinicians might interpret the same dermoscopic 

images differently, leading to inconsistent diagnoses for the 

same lesions. The variability highlights the inherent subjectivity 

of dermoscopic analysis and underscores the need for more 

objective and reliable diagnostic methods. Such advancements 

would greatly enhance early melanoma detection and reduce 

diagnostic discrepancies in clinical practice.  
 

Detecting melanoma, especially in its early stages, poses 

significant challenges. These are primarily due to its clinical 

presentation, which often resembles benign lesions that closely 

mimic the appearance of melanoma, which can complicate 

accurate diagnosis and timely intervention. Benign mimickers, 

such as dysplastic nevi (DN), share visual characteristics with 

melanoma, making it difficult for clinicians to distinguish them 

solely through visual inspection [5,6]. Their appearance 

frequently overlaps with the ABCDE-melanoma detection 

criteria, commonly presenting with ill defined borders, variable 

coloring, bumpy surfaces, and larger in size than common nevi 

[7,8]. While these lesions are often diagnosed based on their 

clinical appearance, they are occasionally biopsied to rule out 

melanoma.  
 

Histologically, DN present with an irregular appearance similar 

to that of melanoma due to its dysplastic growth pattern [9,10]. 

While these lesions are benign, they serve as important 

indicators, identifying patients who are at a greater risk of 

developing melanoma in the future [8,9]. As such, for patients 

who present with DN or are diagnosed with dysplastic nevi 

syndrome (DNS), routine skin checks are essential. These 

regular examinations play a crucial role in the early detection of 

melanoma, enhancing the chances for effective treatment and 

better outcomes. 
  
The variability in lesion appearance across different individuals 

adds another layer of complexity, increasing the risk of 

misdiagnoses or delays in detecting malignant changes. The 

limitations of visual inspection for early melanoma detection are 

profound, as many melanomas do not exhibit distinct or 

recognizable features until they have progressed to more 

advanced stages. Balancing the identification of early-stage 

melanoma without over unnecessarily biopsying benign lesions 

remains a challenge [11]. Such difficulties hinder effective early 

intervention strategies, ultimately increasing the risk of poor 

outcomes for patients.  
 

Deep Learning in Dermoscopic Analysis 

The integration of deep learning, a subset of artificial 

intelligence (AI), into dermoscopic analysis offers promising 

advancements in the detection and diagnosis of melanoma, 

eliminating clinician-diagnostic variability, misdiagnosis, and 

delayed treatment. Deep learning algorithms are capable of 

performing automated feature extraction from dermoscopic 

images, significantly improving diagnostic accuracy and 

consistency [2]. These techniques leverage large datasets and 

sophisticated neural networks to identify patterns and features 

associated with disease pathology, which may not be 

immediately apparent to human observers [12]. By providing a 

standardized approach to image analysis, deep learning has the 

potential to reduce inter-observer variability and subjective 

interpretation, ensuring more uniform and reliable diagnostic 

outcomes. The improved accuracy and consistency offered by 

deep learning approaches represent a crucial step forward in the 

early detection of melanoma, paving the way for more effective 

and timely treatments. 
 

Understanding Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) have emerged as a 

transformative tool in the realm of image analysis. Their ability 

to adaptively learn spatial hierarchies of features from inputted 

images has revolutionized how visual data are processed and 

interpreted. The core of CNNs has several key architectural 

components, known as layers [13]. These layers begin with an 

input layer that receives the input image and ends with an output 

layer that provides the predictive factors of the image. A few 

important layers to discuss in detail include convolutional 

layers, pooling layers, and fully connected layers. Convolutional 

layers apply a series of learnable filters to the input image, which 

detect specific filtered or selected patterns within the image [13]. 

As the filters of convolutional layers move across the image, this 

feature is able to map out and capture hierarchies such as 

textures, edges, and shapes. 
  
Subsequently, pooling layers work to reduce the spatial 

dimensions from the output of convolutional layers. Pooling 

layers decrease the width and height of a map while maintaining 

the same depth to simplify the original image model [14]. This 

is typically executed via max pooling or average pooling. Max 

pooling retains the most important features of an image while 

reducing its size, while average pooling smooths out the image 

features while also reducing its size; these techniques help to 

decrease the number of parameters within the network, ensuring 

that the image is less computationally intensive to analyze [14]. 

Faster processing times are a key benefit of this efficient 

method. By down-sizing the image, the network becomes less 

sensitive to small changes in the input, which offers several 

advantages including improved generalization, stability, and 

reduced overfitting [15].  

  

Lastly, fully connected layers, or dense layers, connect every 

neuron in each layer to every neuron in the subsequent layer.  
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Fully connected layers are typically situated towards the end of 

the network and are responsible for high-level reasoning and 

classification based on the features extracted by the preceding 

convolutional and pooling layers [16]. This layer integrates and 

interprets learned features to classify an image into a specific 

category and then make predictions about the image, such as 

categorizing lesions as benign or malignant. With the high 

precision layering technique that CNNs employ, the likelihood 

of false positives and false negatives in melanoma diagnosis can 

be significantly reduced [17]. Furthermore, CNNs can serve as 

a second opinion, increasing diagnostic confidence and enabling 

informed decision-making practices. With these early and 

accurate melanoma diagnoses, there are timely interventions 

which can prove to better patient survival rates and outcomes.  

  

One study assessing deep learning algorithms across various 

datasets for 12 different skin diseases, including melanoma, 

determined the area under the curve (AUC) for melanoma 

predictions to be 0.96 ± 0.00 within one dataset [18]. This 

suggests almost no variability in the model’s performance and 

indicates excellent diagnostic accuracy. Although the study did 

find that the melanoma specificities differed between two 

datasets, potentially due to skin coloration outside of the lesions, 

a solution was presented to generate different models for those 

with SOC. In 2021, an evaluation of 19 studies comparing the 

performance of AI models for automated melanoma 

classification to human experts showed that deep integrated 

learning CNN’s performed superiorly or at least equivalently to 

clinicians [20].  

  

In addition to these foundational components, transfer learning 

has become a powerful approach in the application of CNNs to 

dermoscopic image analysis. Transfer learning leverages 

models that have already been trained on large and diverse 

datasets to initialize the network, which can then be fine-tuned 

on a specific task, such as melanoma detection [21,22]. For 

instance, models pre-trained on the ImageNet, a database with 

millions of annotated images across thousands of categories, 

have also proven to be highly effective [17]. Because these pre-

trained models are already capable of identifying a variety of 

features and patterns across a wide range of images, detection is 

significantly accelerated. The model only needs to adjust its 

weights to specialize the specific features relevant to melanoma 

[17,22]. This fine-tuning process entails further training the 

model on a smaller, more finite, and specific dataset related to 

melanoma. By leveraging these pre-trained models, researchers 

and clinicians can develop highly reliable tools for early and 

precise melanoma diagnosis. 

  

Model Training Strategies 

Effective training strategies are crucial for maximizing the 

performance of CNNs in dermoscopic image analysis for 

melanoma detection. One such strategy is data augmentation, 

which enhances the diversity of the training dataset without the 

need for additional data collection. This technique is vital in 

preventing overfitting, in which a model performs well on 

training data but poorly on unseen and new data, while also 

improving the model's generalization capabilities [15]. Common 

data augmentation methods include geometric transformations 

of the input images, such as cropping, flipping, rotating, and 

scaling. Altering of the geometry of images helps the model 

learn invariance to these transformations; in other words, the 

object’s orientation or size should not affect its identification, so 

melanoma should be able to be detected regardless of its position 

in the image [23]. Color augmentations, which adjust the 

brightness, contrast, saturation, and hue, allow the model to 

become robust to variations in lighting conditions and color 

distributions [23]. This is particularly important as no two 

individuals share the exact same skin tone. A study on the 

symmetry of pigmented lesions analyzed their geometry, 

texture, and color between benign lesions and melanoma [24]. 

Using this symmetry analysis for skin cancer diagnosis, the 

study achieved a sensitivity and accuracy rate of 78% and 72%, 

respectively. 

  

Additionally, Generative Adversarial Networks (GANs) can 

produce synthetic images that closely resemble the original 

dataset, further enriching the training data. GANs that have 

learned melanoma detection can then create new images of 

melanoma to serve as additional examples to learn from without 

having to manually collect more data. Qin et al. proposed their 

own GAN for skin lesions and compared their model to other 

GAN models [25]. The proposed skin lesion style-based GAN 

was evaluated against the International Skin Imaging 

Collaboration (ISIC) dataset in 2018, and accuracy, sensitivity, 

specificity, average position, and balanced multiclass accuracy 

metrics were accounted for. Increases of 1.6% raised accuracy 

to 95.2%, increases of 24.4% raised sensitivity to 83.2%, 

increases of 3.6% raised specificity to 74.3%, increases of 

23.2% raised average precision to 96.6% and increases of 5.6% 

raised balanced multiclass accuracy to 83.1%. Therefore, adding 

synthesized images created from GANs to the training set model 

significantly improved the model’s performance in correctly 

identifying both malignant and benign lesions, as well as in 

maintaining a high level of precision and balanced accuracy 

across multiple classes. 

  

Another critical aspect of model training is the choice of loss 

functions and optimization algorithms. Loss functions quantify 

the difference between the predicted and actual outputs, guiding 

the model’s learning process. Cross-entropy loss is commonly 

used for classification tasks, as it measures how well the 

predicted probabilities match the actual class labels [26]. Cross-

entropy would specifically be employed to categorize benign 

versus malignant melanoma. Focal loss, on the other hand, is 

designed to address class imbalance by down-weighting the loss 

assigned to well-classified examples, thereby focusing more on 

hard-to-classify instances [26]. Optimization algorithms, such 

as Stochastic Gradient Descent (SGD), update the model 

parameters based on a random subset of data [27]. This 

gradually improves accuracy of analyzing networks in small 

steps and with each iteration, leading to faster convergence and 

reduced memory usage.  

  

Datasets for Dermoscopic Image Analysis 

The use of high-quality datasets is indispensable for training and 

evaluating deep learning models in dermoscopic image analysis. 

These datasets provide a diverse range of images and 

annotations, which are crucial for developing both robust and 

accurate models. Several key datasets have been instrumental in 

advancing research in this field. The ISIC Archive is a large 

repository of dermoscopic images that features various skin 

conditions along with annotations made by experts [23]. Each 

image is labeled precisely with information about the condition 

it represents, which is crucial to effectively train models. The 

ISIC Melanoma Project, a subset of the ISIC Archive, focuses 

specifically on melanoma detection, offering a comprehensive 

dataset for developing and benchmarking models that aim to   
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identify melanoma. The BCN20000 dataset also facilitates 

research in skin lesion analysis as it comprises dermoscopic 

images from the Hospital Clínic of Barcelona. Similarly, the 

Human Against Machine (HAM) 10000 dataset provides a large 

collection of multi-source dermoscopic images of common 

pigmented skin lesions from different sources and conditions, 

serving as another valuable resource for training deep learning 

models [28]. A study that used the HAM10000 and BCN20000 

datasets combined with an algorithm known as artificial jellyfish 

(AJS) and the Feature-based Optimized Weighted Feature Set 

(FOWFS) strategy demonstrated both accuracy and precision in 

skin lesion diagnosis [29]. 

  

Preparing high-quality training data involves several critical 

steps, including data annotation and preprocessing. Arguably 

the most important aspect is the expert annotation, which 

ensures that the labels used in the training process are accurate 

and reliable. Data cleaning is also a vital process, which involves 

removing irrelevant images that could negatively impact the 

model’s performance [30]. Normalization, the process of scaling 

the pixel values to a common range, helps in stabilizing and 

accelerating the training process [30]. These datasets create a 

library of images, complete with expert notes, that teach CNNs 

to accurately recognize and diagnose various skin conditions. 

By cleaning up the images and arranging them into similar 

formats, the training process smoothens, and resulting models 

become increasingly reliable for practices such as melanoma 

detection. Thus, applying CNNs to dermoscopic image analysis 

involves understanding and implementing various architectural 

components, leveraging transfer learning, adopting effective 

model training strategies, and utilizing high-quality datasets. 

These elements collectively contribute to the development of 

accurate and reliable models for melanoma detection and other 

dermatological tasks. 

 

Performance Evaluation and Benchmarking 

Sensitivity, specificity, and area under the curve (AUC) 

Critical metrics in the evaluation of melanoma detection include 

sensitivity, specificity, and AUC. Sensitivity, also known as the 

true positive rate, measures the proportion of actual melanoma 

cases correctly identified by a diagnostic tool. High sensitivity 

is crucial for minimizing false negatives and thus ensuring that 

patients with melanoma receive timely treatment. Specificity, or 

the true negative rate, measures the proportion of non-melanoma 

cases accurately identified, therefore reducing the number of 

false positives and potentially unnecessary medical treatments. 

The AUC is derived from the receiver operating characteristic 

(ROC) curve, which plots sensitivity against 1-specificity. An 

AUC of 1 represents a perfect test, while an AUC of 0.5 

indicates a test with no discriminative power. In the context of 

melanoma detection, a higher AUC value signifies better overall 

diagnostic performance. The AUC is a valuable measure as it 

reflects the model’s ability to distinguish between positive and 

negative cases across various threshold settings [31]. Literature 

has supported the efficacy of deep learning models in achieving 

high sensitivity and specificity. For example, a CNN developed 

to classify dermatological lesions demonstrated a sensitivity of 

72.1% and a specificity of 91.0%, with an AUC of 0.91, 

surpassing the performance of dermatologists (AUC 0.87) [32]. 

This study highlights the potential of AI in augmenting 

diagnostic accuracy and dependability in dermatologic practice. 

 

 

Diagnostic accuracy of human experts compared to Deep 

Learning and traditional dermoscopic evaluation 

The diagnostic accuracy of human experts in melanoma 

detection using dermoscopy has traditionally served as a 

benchmark in clinical practice. Dermoscopic evaluation relies 

on the visual assessment of skin lesions, requiring substantial 

expertise and experience. Studies have indicated that 

experienced dermatologists have a high diagnostic accuracy, but 

this can vary significantly. For instance, Vestergaard et al. 

reported a diagnostic accuracy ranging from 75% to 85% among 

dermatologists using dermoscopy [33]. 
 

Research comparing the performance of a combined CNN 

model with human medical personnel, including 62 board-

certified dermatologists, in expert-level diagnosis of 

nonpigmented skin cancer revealed that the AUC-ROC of the 

trained CNN was higher than human ratings [34]. The sensitivity 

of the CNN was also higher than that of human raters. Moreover, 

the study demonstrated that the CNN had a greater percentage 

of correct specific diagnoses compared to human raters, 

however, the percentage correct was less than that of experts. 

These results support that neural networks are capable of 

classifying dermoscopic images with significant accuracy and 

have the potential to contribute greatly to healthcare 

environments. 
 

Inter-observer variability among clinicians 

Interobserver variability refers to the differences in diagnostic 

decisions made by different clinicians when evaluating the same 

patient. This variability can significantly affect the reliability of 

melanoma detection using traditional dermoscopy. Vestergaard 

et al. highlighted that the level of agreement among 

dermatologists in diagnosing melanoma can range from 

moderate to substantial, indicating variability in diagnostic 

consistency [33]. Hence, the introduction of AI and deep 

learning models into clinical practice holds the potential to 

reduce inter-observer variability. Haenssle et al. concluded that 

CNN reduced interobserver variability among dermatologists by 

providing a consistent second opinion, which helped standardize 

diagnostic decisions [35]. AI and deep learning models provide 

consistent results determined by standardized algorithms, 

thereby minimizing the subjective nature of human diagnosis.  
 

Deep learning also holds potential as a diagnostic tool distinct 

from traditional machine learning approaches. The goal of 

implementing deep learning is to develop accurate diagnostic 

techniques capable of analyzing raw data without requiring 

human input or oversight. This is particularly beneficial in rural 

areas lacking access to medical imaging experts, as it provides 

an automated system capable of disease detection [36]. The 

ability to rely on AI for diagnosis with the same accuracy as 

healthcare professionals represents a significant advancement in 

global healthcare. Moreover, traditional diagnostic imaging is 

often hindered by time-consuming analysis and susceptibility to 

human error [37]. Deep learning addresses these issues by 

delivering timely and accurate results, free from the effects of 

human fatigue. 
 

Discussion of Different Deep Learning Models 

To date, numerous studies have shown the effectiveness of deep 

learning models to identify melanoma and other skin lesions 

through dermoscopic images. These studies have used various 

data sets and learning models, showing mixed results. It is 

crucial to recognize differences in performance to determine the  
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models best suited for clinical practice. Several of the primary 

learning models are discussed here.   

  

Inception 

Inception is one of the primary models used in identifying 

melanoma from dermoscopic images. Leveraging its intricate 

architecture, Inception-based models excel at capturing specific 

details and patterns in dermoscopic images that indicate 

melanoma. Work by Haenssle et al. showed that Inception-based 

technology was able to outperform dermatologists in identifying 

melanoma with an AUC of 0.86 compared to 0.79 in the 

dermatologist group [35]. Additionally, Esteva et al. highlighted 

the capability of deep neural networks to perform on par with 

board-certified dermatologists in diagnosing skin cancer, 

including melanoma, from clinical images [32]. The model in 

this study utilized 129,450 images and achieved an AUC of 0.91 

for melanoma detection, similar to that of board-certified 

dermatologists. These findings underscore the potential of 

Inception-based deep learning methods to detect and diagnose 

melanoma from dermoscope images. 
 

ResNet 

ResNet-based models have also demonstrated strong 

performance in melanoma detection in several studies. A study 

focusing on the classification of benign and malignant lesions 

using a ResNet152 structure demonstrated that the deep learning 

algorithm achieved high sensitivity (82%) and specificity 

(92.5%) in detecting melanoma, with a reported accuracy of 

90% [38]. Additionally, Han et al. used a ResNet CNN model to 

identify 12 skin diseases, including melanoma, with notable 

success. This model was trained on a dataset of 129,450 clinical 

images and achieved a high level of performance comparable to 

that of board-certified dermatologists [18]. Specifically, the 

CNN model achieved a sensitivity of 91.0±4.3% and a 

specificity of 90.4±4.5% for melanoma detection, 

demonstrating its effectiveness in identifying malignant skin 

lesions. This model’s ability to diagnose across 12 different skin 

diseases, rather than focusing solely on melanoma, may enhance 

its applicability in diverse clinical settings.  
 

Inception-ResNet 

The Inception-ResNet technology takes the existing strengths of 

Inception and adds residual connections to enhance accuracy 

[39]. Work using this model shows both improvements in 

accuracy and time to detection, a crucial element when 

considering the practicality of these tools. Singh et al. produced 

an accuracy of 96% using the ISIC 2020 dataset with a detection 

time of 39 seconds [40]. Using a similar model with the 

HAM10000 dataset, Alwakid et al. achieved an accuracy of 91% 

[41]. Both of these studies used standardized datasets to train 

their deep learning tool, showing improved accuracy compared 

to prior models. 
 

EfficientNet 

As a newer CNN architecture, EfficientNet has not been as 

widely studied in the detection of melanoma. However, a recent 

study using ISIC-2019 and ISIC-2020 datasets achieved an 

AUC of 0.97, outperforming other models in diagnosing 

melanoma [42]. EfficientNet offers unique benefits, as it is 

highly scalable and provides a systematic approach to expanding 

in three dimensions: depth, width, and resolution [43]. As 

technology progresses, such as with EfficientNet, available tools 

to detect melanoma should perform more accurately and 

efficiently, making them more applicable to clinical practice. 

Challenges in Performance Evaluation and Benchmarking 

While accuracy continues to improve within deep learning 

models, significant challenges still exist in dataset diversity and 

standardized evaluation protocols. These areas must be 

addressed to produce robust technology that can be used 

globally in medical practice. Dermoscopic image datasets used 

for training and evaluation in melanoma detection often suffer 

from biases and lack diversity, which can impact the 

generalizability of deep learning models. Biases in datasets, 

such as overrepresentation of light-skinned individuals, can lead 

to model performance disparities and hinder real-world 

applicability. Guo et al. have pointed out significant disparities 

that exist within current research on AI applications in 

dermatology [44]. In their review of 136 studies, they found that 

only six studies disclosed the skin types of the image sources. 

Among these, only two studies included type VI skin, with a 

total of just five subjects across the studies. It is crucial to 

address these biases, as melanoma tends to be more deadly 

among those with SOC, likely due to later stages of diagnosis 

[45]. Building deep learning models that can accurately 

diagnose melanoma in SOC may alleviate health disparities seen 

in dermatology.  
 

In a multicenter observational study conducted by Mitre et al., 

the accuracy of an AI algorithm from the ISIC 2020 grand 

challenge was evaluated in a cohort of 100 non-Hispanic Black 

individuals [46]. The study revealed significant inaccuracies: 

95.7% of benign volar lesions, 98.6% of benign dorsal skin 

lesions, and 100% of benign nail lesions were incorrectly 

identified as melanoma, resulting in specificities of 4.3%, 1.4%, 

and 0%, respectively. These results contrast with those of a prior 

study by Marchetti et al., which reported a sensitivity of 96.8% 

and specificity of 37.4% using the same AI algorithm but tested 

primarily on a cohort that was 96% white [47]. This discrepancy 

underscores the critical issues of accuracy and bias that arise 

when AI algorithms are trained on datasets that do not 

adequately represent the diversity of the population they serve.   
 

Furthermore, the absence of standardized evaluation protocols 

presents a significant challenge in the objective assessment and 

comparison of deep learning models for melanoma detection. 

Without uniform benchmarking standards, it becomes 

challenging to determine the relative performance of different 

models and methodologies accurately. Addressing this requires 

the development of standardized evaluation metrics, 

methodologies, and datasets for consistent performance 

assessment across studies. Prior deep learning models have used 

a variety of datasets to train their models. For example, Haenssle 

et al. used 300 images selected from the University of 

Heidelberg image library [35] More recent research, however, 

has shifted towards using standardized datasets, such as ISIC 

and HAM10000 [40,41]. The International Skin Imaging 

Collaboration Melanoma Project has been addressing these 

shortcomings by organizing annual computer science challenges 

and providing standard datasets [48]. These initiatives facilitate 

standardized comparisons between learning models, while also 

promoting collaboration and innovation within the field.  
 

Interpretability and Explainable AI 

Importance of Interpretability in Clinical Decision Support 

A significant obstacle to physicians accepting and integrating 

the use of AI within the clinical setting is the interpretability and 

explainability of the AI system. CNN is often referred to as 

“black box” technology due to the current limitations in  
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understanding how data is integrated to formulate a result and 

what defining variables the generated outcome is founded upon 

[49]. In order for a physician to confidently agree or disagree 

with the AI system, the ability to detect where an error in 

reasoning has occurred, whether that be within the physician’s 

own thought process or the AI system, must be discernible. 

Explainability of CNN provides the foundation for experts 

within a field to trust outputs by AI systems and to feel 

comfortable incorporating its recommendations into clinical 

decision making.  
 

The current lack of interpretability of CNN raises concerns on 

its ability to comply with ethical and regulatory guidelines of 

medical practice. One concern is the ability to maintain patient 

autonomy in regards to consent for use of personal information 

within the AI algorithm. Currently, there is a lack of consensus 

on how patient consent should be obtained or if it is even 

necessary to obtain at all [50]. This could have detrimental 

effects on the patient-doctor relationship and undermines the 

patient’s autonomy if the use of an AI system or patient 

information occurs without explicit consent. If physicians are 

unable to effectively communicate the reasoning for their 

professional recommendation formulated with the aid of CNN, 

it becomes impossible for the patient to have an active role in 

their care and further decreases their autonomy. For patients and 

physicians to confidently follow the guidance of an AI decision, 

it is crucial to understand how that decision was made and to 

ensure that the variables deemed most important by the AI align 

with the patient’s priorities. For example, an AI system that is 

taught to prioritize patient survival may not provide decision 

making that is suitable for a palliative care patient whose priority 

is to reduce their suffering [50].   
 

Another concern is the extent of liability that falls on physicians 

that utilize AI systems for clinical decision making. Would a 

physician be liable if they did not inform the patient of the risk 

and benefits of utilizing the AI system? What are the 

implications of using an AI system whose reasoning is not 

explainable in the case of a poor medical outcome, and does this 

give grounds for liability for medical malpractice? Consent, 

privacy, standardizing use of data, and liability are topics of 

ongoing debate with accountability of AI still in its early stages 

of development. The explainability of AI may ultimately 

become a requirement for these systems under data protection 

law. Despite dermatologists reporting concerns for inaccuracies 

and risk of lawsuits, an overwhelming majority see AI as a 

promising addition to the field that will ultimately improve 

patient care once optimized [51,52].   
 

Techniques for Enhancing Interpretability  

For clinicians to comfortably integrate AI systems into clinical 

practice, the AI algorithms must be transparent and 

understandable to users. Recently, different types of 

explainability artificial intelligence (XAI) models have been a 

topic of research and discussion in attempts to improve 

transparency of AI decision making. Many of these techniques 

are considered post-hoc interpretation techniques, as they 

attempt to analyze the neural network after it has been trained. 

One proposed method is the application of saliency/attribution 

maps. Saliency maps offer valuable insights by highlighting the 

pixels within an image that the AI algorithm has identified as 

most important, illustrating what information guided the 

network’s decision-making process [53]. While this method 

allows users to see what part of the image the AI system 

determines influential, it does not provide further insight into 

how this is incorporated into neural network decisions and is 

difficult to interpret into meaningful and easily understandable 

information. Another limitation of gradient-based techniques 

like saliency maps is the potential for inputs to become 

saturated, which ultimately diminishes the importance assigned 

to what would be considered a relevant area [54].  
 

Another method is the perturbation-based technique that applies 

discrete modifications to each variable to measure its 

contribution to the outcome [55]. An example of this is Local 

Interpretable Model-Agnostic Explanations (LIME), which 

provides an interpretation of an outcome from the original 

model by taking predictions of the AI model and approximating 

a simpler version that is subsequently used to interpret the 

original outcome [56]. However, a drawback to this technique is 

that it analyzes an explanation for a single point that may not be 

generalizable across different inputs. This limitation 

underscores the need for careful application and possibly 

supplementary methods to ensure broader relevance and 

applicability.  
 

While local methods like LIME produce an explanation for a 

single point within a set of points, Concept Activation Vector 

(CAV) is a type of global perturbation method that provides an 

explanation for the entire set of points by training a linear 

classifier to separate concepts from random images [57]. Testing 

Concept Activation Vector (TCAV) provides a score to indicate 

the importance of each concept towards creating the prediction. 

In a study by Kim et al., physicians using the TCAV method for 

predicting diabetic retinopathy (DR) were able to identify which 

concepts the AI system emphasized [57]. This insight helped 

them determine which variables the AI deemed most important 

for diagnosing DR, increasing their understanding of the AI-

assisted diagnostic process. Concept-driven explainability of the 

AI model provides opportunities for physicians to collaborate 

with the CNN model and incorporate their professional expertise 

to maximize the overall capabilities of AI modalities.  
 

Ethical Considerations  

The adoption and integration of electronic health records 

(EHRs) has led to the accumulation of massive amounts of 

patient data. One significant challenge associated with this large 

volume of data is the ability to navigate the information 

effectively to facilitate clinical decision-making and improve 

patient care [58]. The advent of AI technology, capable of 

performing thorough analyses of secondary patient data, offers 

numerous advantages over traditional primary data collection 

methods. A principal argument for the integration of AI 

algorithms for analysis of EHRs is their ability to analyze patient 

data through longitudinal assessments at a fraction of the cost 

associated with primary data collection. AI technology can reuse 

existing patient data, eliminating the need for additional patient 

recruitment and streamlining the longitudinal processes 

necessary for effective research.  
 

Informed consent is a principle ensuring that a fully aware and 

competent patient intentionally permits healthcare professionals 

to use their information. This process is characterized by clear 

transparency in the informational exchange between the 

physician and the patient, which is critical for the ethical 

evaluation of such transactions. However, the use of AI 

technology is viewed by some as a breach of this transparency, 

presenting obstacles to the use of EHR AI analysis for secondary  
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studies [59]. This controversy over transparency segues into 

broader discussions about the implications of AI integration in 

healthcare settings.  
 

The question of whether patients should be informed about the 

use of AI in decision-making remains a significant topic of 

debate. The consensus is that when AI serves solely as a support 

tool in decision-making, obtaining patient consent might not be 

necessary. However, when AI plays a decisive role in 

determining the diagnosis or course of treatment, transparency 

becomes imperative, and patients should be fully informed. A 

pertinent issue in this debate is whether consent needs to be re-

obtained if the patient’s information is used in previously 

unidentified platforms [59].  
 

Key reasons to advocate for patient awareness of AI 

involvement in their healthcare include the risks of cyberattacks 

and data breaches, potential systematic biases in the algorithms, 

and the possibility of mismatches between AI assumptions and 

individual patient backgrounds [60]. Although the integration of 

AI with patient health records does pose certain risks, the 

establishment of clear and universal guidelines can protect 

patient privacy while maximizing the benefits derived from 

extensive, pre-existing data collections. Governing the use of AI 

in healthcare is complex, but the long-term advantages of deep 

learning, such as the ability to sift through millions of medical 

records for pertinent information and pattern recognition, are 

believed to substantially outweigh the drawbacks [59]. This 

capability not only enhances the efficiency of medical diagnoses 

but also significantly reduces the time and effort required 

compared to manual analysis by human experts.  
 

Future Directions 

Addressing Dataset Biases and Diversity 

The ISIC, one of the largest and most frequently used databases, 

primarily consists of data from fair-skinned populations in the 

United States, Europe, and Australia [61]. The success of deep 

learning algorithms heavily depends on both the volume and 

quality of data that they learn from. The apparent lack of 

diversity within these training datasets can introduce significant 

biases in the AI algorithms, limiting their applicability across 

diverse patient populations. This includes communities of color 

or individuals with rare diagnoses that are underrepresented in 

the data. A solution to this is to diversify image training sets to 

include a broader spectrum of melanoma and skin conditions 

prevalent among SOC, anatomical sites typical of minority 

populations, and rare atypical presentations of skin diseases 

[61].   
 

To address dataset imbalances, techniques such as the Synthetic 

Minority Over-Sampling Technique and Adaptive Synthetic 

Sampling can be used. These methods generate synthetic 

examples of minority populations to enhance AI model 

performance in underrepresented groups [62]. While this 

strategy can help balance the dataset, it is important to 

understand that this can unintentionally lead to incorporation of 

additional biases into the dataset. Additionally, concept-based 

explanations like TCAV and others can be instrumental in 

identifying and understanding biases present in databases. These 

explanations offer insights that can guide the customization of 

network training to control which features are emphasized in the 

AI model. 

 

Exploration of Hybrid Approaches and Multimodal Data 

Fusion 

The use of dermatoscopic images in AI models has been shown 

to provide more accurate outputs than macroscopic images of 

the same lesion [63]. This is likely due to the dermatoscope’s 

hardware, which introduces physically limiting variables like 

image size, lighting, and distance. However, recent research has 

been exploring the potential benefits of a multimodal approach 

to further optimize the accuracy of neural networks. Similar to 

how physicians utilize information from various sources to form 

a differential diagnosis, CNNs can also benefit from integrating 

data from multiple sources. 
 

A study by Binder et al. demonstrated a significant improvement 

in a neural network’s ability to differentiate early melanoma 

from benign pigmented lesions when trained on a combination 

of morphometric and clinical features, such as patient age and 

anatomic location, compared to morphometric features alone 

[64] Thus, future research should focus on effective data fusion 

occurring across different domains to include various types of 

images and textual inputs. Moreover, there is a growing trend in 

the development of hybrid neural networks that integrate 

multiple CNN features to improve the AI system’s ability to 

discriminate between benign and malignant lesions [65]. Such 

advancements should be further investigated to maximize the 

potential of hybrid and multimodal AI systems in increasing the 

performance and reliability of CNN models in clinical settings.  
 

Standardization of Evaluation Metrics and Benchmarking 

The development and deployment of deep learning models for 

dermoscopic image analysis face significant challenges, 

particularly in the standardization of evaluation metrics and 

benchmarking protocols. To ensure consistent and reliable 

performance assessments, there is a pressing need for the 

standardization of these evaluation protocols, and for 

benchmarking datasets to be made publicly available. Without 

standardization, it becomes difficult to compare the 

effectiveness of different models, hindering the progress and 

validation of new techniques. 
  
Currently, the lack of uniform evaluation criteria means that 

researchers use different metrics and datasets to test their 

models, which introduces variability in reported performances. 

To facilitate fair and meaningful comparisons, it is essential to 

develop standardized evaluation protocols that provide a 

common framework for assessing models. These protocols 

should clearly define guidelines for key metrics such as 

sensitivity, specificity, accuracy, and the AUC. The ISIC 

Archive serves as a perfect example of a publicly available 

benchmarking dataset that can act as a reference point for 

evaluating new models. Making such resources accessible 

enables researchers to effectively build upon each others’ work, 

fostering collaboration and accelerating advancements in the 

field.   
 

Addressing ethical concerns in AI deployment 

Federated learning involves training machine learning models 

across multiple servers that hold local data samples, without the 

need to exchange the data itself [66]. This method allows models 

to learn from a broad dataset without compromising individual 

privacy. Importantly, federated learning facilitates the 

classification of skin conditions while maintaining stringent data 

security protocols. Rather than transmitting raw data to a central  
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server, only model updates are shared, significantly reducing the 

risk of data breaches.  

  

Additionally, privacy-preserving AI techniques such as 

differential privacy and homomorphic encryption provide 

additional layers of data protection [67]. Differential privacy 

protects individuals by ensuring that the removal or addition of 

a single data point does not substantially impact the outcome of 

the analysis. Meanwhile, homomorphic encryption allows for 

secure data processing by allowing computations to be 

performed on encrypted data without the need for decryption, 

preserving the confidentiality and integrity of the data 

throughout the processing phase [67]. It is crucial to develop and 

implement more robust frameworks that not only meet current 

ethical standards but also anticipate future challenges in health 

data security and privacy.  
 

Conclusion  

This review extensively examines the integration of deep 

learning with dermoscopic imaging for melanoma detection, 

highlighting significant advancements and the potential to 

transform dermatological diagnostics. Despite these 

advancements, challenges remain in dataset diversity, ethical 

considerations, and standardized evaluation metrics. Enhanced 

accuracy in early melanoma detection through deep learning 

models and hybrid approaches promises improved patient 

outcomes but requires addressing biases, particularly in datasets 

that predominantly reflect fair-skinned populations. Ethical 

implementation in dermatological settings necessitates rigorous 

frameworks to ensure patient privacy, data security, and 

transparent AI decisions. Future research should focus on 

refining AI methodologies, ensuring seamless integration with 

clinical workflows, and more effectively incorporating clinician 

expertise into the decision-making process while maintaining 

patient autonomy. By addressing these areas, deep learning 

technologies can play a transformative role in dermatological 

diagnostics, particularly melanoma detection, offering more 

personalized and effective treatment options. This progression 

will not only enhance the diagnostic capabilities of 

dermatologists but also lead to better patient management and 

improved healthcare delivery. 
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