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Introduction 

The skin microbiome is composed of diverse microorganisms, 

including bacteria, fungi, viruses, and mites, that are crucial in 

maintaining a host's homeostasis and barrier integrity. This 

broad range of microbes interacts with the host's immune system 

to maintain an intricate balance between commensal and 

pathogenic organisms, preventing the overgrowth of the 

pathogenic microbes and still supporting the host's skin barrier 

and protective functions. The commensals often seen within the 

skin microbiome include Staphylococcus epidermidis (S. 

epidermidis) and Cutibacterium acnes (C. acnes), which 

function to produce antimicrobial peptides that inhibit pathogen 

growth, and modulate immune responses to maintain skin health 

[1]. The skin microbiome's influence extends to the 

development and function of the host's immune system, as 

exemplified by S. epidermidis' ability to induce IL-17A 

production by CD8+ T cells, thereby enhancing innate barrier 

immunity and limiting pathogen invasion [2]. There are times 

when this intricate balance becomes disrupted, known as 

dysbiosis, leading to impaired barrier function, increased 

susceptibility to infections, and even inflammatory skin 

disorders. Triggers to disrupted homeostasis can include diet,  

 
 

genetic mutations, trauma, surgeries, and foreign bodies, 

potentially leading to cutaneous presentations, such as atopic 

dermatitis, acne, and psoriasis [3]. Understanding the complex 

interactions between commensal and pathogenic 

microorganisms and the host's immune system is essential for 

developing effective strategies to manage skin health and 

prevent disease, particularly in the context of orthopedic 

implant-related infections and failures. 
 

Postoperative infections, particularly periprosthetic joint 

infections (PJIs), occur in approximately 1-2% of all total joint 

arthroplasty procedures [4]. These infections can significantly 

impact patient quality of life, morbidity, and mortality. Recent 

studies have shown a growing link between these infections and 

dysbiosis of the microbiome [5]. This emphasizes the complex 

interplay between the host’s skin microbiome and surgical 

success. A significant challenge in managing PJIs is the 

formation of biofilms on orthopedic implants, which commonly 

involve skin commensals like S. epidermidis [5]. Biofilms create 

a protective environment for bacteria, preventing the host's 

immune system from effectively targeting them by limiting  

American Journal of Clinical and Medical Research 

 
ISSN: 2835-9496 

Misra R, et al. (2025): 789  

Ameri J Clin Med Re, 2025; 5(1): 100179 

DOI: 10.71010/AJCMR.2025-e179 

Abstract 

The skin microbiome, a dynamic ecosystem of commensal and pathogenic microorganisms, plays a critical role in maintaining 

immune homeostasis and barrier integrity at surgical sites. Yet, its disruption has been increasingly implicated in postoperative 

infections in orthopedic surgery. Dysbiosis, marked by an overrepresentation of opportunistic pathogens such as Staphylococcus 

aureus and Cutibacterium acnes, often arises from preoperative antiseptic protocols and prolonged hospital exposures. An 

imbalance compromises the skin’s natural defense mechanisms, facilitating microbial translocation to the implant surface and 

promoting biofilm formation. Biofilms, composed of extracellular polymeric substances, protect embedded bacteria from 

immune responses and antimicrobial agents, significantly increasing the risk of chronic periprosthetic infections, and eventual 

implant failure. Reduced diversity of commensal species, such as Staphylococcus epidermidis, further exacerbates the risk, as 

these organisms typically inhibit pathogen colonization through competitive exclusion and antimicrobial peptide secretion. 

Emerging evidence suggests that targeted microbiome restoration strategies, including the application of topical probiotics, 

prebiotics, or bacteriophage therapies, may re-establish microbial equilibrium and reduce infection susceptibility. Additionally, 

innovations ‘such as antimicrobial implant coatings and microbiome-preserving skin preparations’ could enhance perioperative 

protocols by preventing dysbiosis-induced complications. High-resolution microbiome sequencing and predictive microbial 

modeling are advancing the identification of at-risk patients, enabling personalized approaches to infection prevention. 

Advancing understanding of the relationship between skin microbiome dysbiosis and implant-associated infections offers a 

paradigm shift in orthopedic surgery, emphasizing precision microbiome management to optimize surgical outcomes and 

implant longevity. 
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antibiotic penetration. Furthermore, metabolically dormant cells 

can exist within these biofilms, exhibiting heightened antibiotic 

resistance, complicating treatment strategies, and increasing the 

risk of prolonged infection. This underscores the need for 

innovative strategies to prevent and treat periprosthetic joint 

infections to enhance patient outcomes and combat antibiotic 

resistance. 
 

Identification of the inciting organism(s) in PJIs is not clear even 

with tissue biopsy and culturing methods, as culture-negative 

infections continue to rise [7]. This is sometimes attributed to 

possible biofilms and antimicrobial medication usage prior to 

culture sampling. It is challenging to accurately detect bacteria 

embedded within biofilms, which are very common on 

orthopedic implants, requiring more sophisticated molecular 

techniques for accurate diagnosis [8]. Unfortunately, these 

traditional approaches have high failure rates, and patients may 

require multiple attempts to successfully diagnose and eradicate 

PJIs. To address these challenges, researchers are exploring 

emerging strategies to improve outcomes. These strategies 

include developing anti-biofilm coatings for orthopedic 

implants that can help prevent bacterial adhesion. Additionally, 

local delivery of antibiotics can target infections effectively, 

which new technologies like intraosseous antibiotic delivery 

methods are exploring. Non-antibiotic methods, such as 

bacteriophages and quorum-sensing inhibitors, are also being 

investigated for their potential to disrupt biofilm formation [9]. 

These findings highlight the urgent need for a comprehensive 

understanding of the microbiome's role in postoperative 

infections and improved strategies to manage and prevent 

complications associated with orthopedic implant surgeries. 
 

This literature review investigates the link between skin 

microbiome dysbiosis and the failure of orthopedic implants, 

emphasizing strategies to manage the skin microbiome to reduce 

postoperative complications. Recent studies have shown that the 

microbiome plays a crucial role in surgical outcomes, especially 

in orthopedic implant procedures, where dysbiosis can heighten 

the risk of infections and implant failures. This review analyzes 

how beneficial and harmful microorganisms interact on the skin 

and how these imbalances can lead to complications. It also 

highlights innovative microbiome management strategies, such 

as anti-biofilm coatings, localized antibiotic delivery systems, 

and non-antibiotic approaches like bacteriophages. This review 

discusses the potential advantages of preoperative microbiome 

assessments in identifying high-risk patients to enhance 

orthopedic surgical outcomes. This review aims to provide 

valuable insights into preventing and managing microbiome-

related infections in orthopedic surgeries. 
 

Overview of Skin Microbiome in Orthopedic Implant 

Failure and Infection 

The skin microbiome is a dynamic and intricate ecosystem 

composed of commensal and opportunistic microorganisms, 

including bacteria, fungi, and viruses. These microbes play 

essential roles in maintaining skin health by protecting against 

pathogenic colonization, modulating immune responses, and 

supporting barrier integrity. The composition of the skin 

microbiota varies based on physiological factors, such as 

sebaceous (oily), moist, or dry regions, which foster the growth 

of specific microbial communities [10-12]. For example, C. 

acnes thrives in sebaceous environments by metabolizing sebum 

triglycerides into free fatty acids, shaping the lipid landscape 

and preventing pathogen overgrowth. However, under dysbiotic 

conditions, biofilm-forming strains of C. acnes can become 

pathogenic, contributing to chronic inflammation and conditions 

such as acne vulgaris [13,14]. In contrast, S. epidermidis, a key 

commensal species, enhances colonization resistance through 

the production of antimicrobial molecules like serine protease 

glutamyl endopeptidase, which disrupt Staphylococcus aureus 

(S. aureus) biofilms and reduce epithelial adhesion [15]. Beyond 

pathogen suppression, S. epidermidis promotes immune 

homeostasis by inducing cytokines such as interleukin-1α, 

which recruit immune cells and strengthen the skin barrier [2]. 

This balance, however, is fragile; disruptions caused by 

preoperative antiseptic protocols, prolonged hospital exposure, 

or skin barrier injury can tip the equilibrium, allowing 

opportunistic pathogens to dominate. 
 

Before understanding how skin microbes are implicated in 

orthopedic infections, it is essential to first understand the 

mechanisms of infection in bacterial biofilms and their ability to 

evade the immune system. A biofilm is a structured community 

of bacteria encased in a protective matrix of extracellular 

polymeric substances (EPS), which includes polysaccharides, 

proteins, extracellular DNA, and lipids [16,17]. This matrix acts 

as a physical shield, preventing antibiotics and immune cells 

from penetrating and effectively targeting the bacteria. Within 

the biofilm, bacteria exhibit altered metabolic activity, often 

entering a dormant state that renders them less susceptible to 

antibiotics, which primarily target actively dividing cells [18]. 

Additionally, biofilm formation allows bacteria to adhere tightly 

to surfaces, such as implants or tissues, creating a persistent 

reservoir for infection [19]. The biofilm environment promotes 

horizontal gene transfer between bacteria, facilitating the spread 

of antibiotic resistance genes and further enhancing their 

survival [20]. To evade immune detection, bacteria within the 

biofilm can downregulate immunogenic surface proteins and 

release factors that suppress the host’s immune response. As a 

result, immune cells like neutrophils and macrophages struggle 

to clear the infection, often leading to prolonged inflammation 

and tissue damage. This persistent and protective nature of 

biofilms makes infections extremely difficult to treat and prone 

to recurrence.  
 

The opportunistic pathogens S. aureus, C. acnes, and 

Pseudomonas aeruginosa (P. aeruginosa) are commonly 

associated with orthopedic infections, particularly following 

surgical procedures or implant placements. S. aureus remains 

the predominant causative organism in both septic arthritis and 

osteomyelitis, accounting for up to two-thirds of all pathogens 

in orthopedic implant infections [21,22]. As a common 

colonizer of the skin, S. aureus can transition into a pathogenic 

state when the skin barrier is disrupted, especially during 

surgical interventions. This transition allows the bacterium to 

efficiently adhere to implant surfaces and form biofilms 

composed of extracellular polymeric substances [23]. Biofilm 

formation plays a critical role in infection persistence, as the 

protective matrix significantly reduces antibiotic penetration 

and shields the bacteria from immune responses. As a result, S. 

aureus can remain on implant surfaces for prolonged periods, 

leading to chronic PJIs that often necessitate surgical revision 

and removal of the infected hardware [24]. In addition to biofilm 

formation, S. aureus possesses immune evasion mechanisms 

that further complicate treatment. For instance, the bacterium 

produces protein A, which binds to the Fc region of 

immunoglobulins, inhibiting phagocytosis and impairing host 

immune clearance [25]. Additionally, toxin production disrupts   
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immune cell function, contributing to persistent infection and 

tissue damage. These combined mechanisms highlight the 

challenge of eradicating S. aureus infections in orthopedic 

settings, as the biofilm matrix and immune evasion strategies 

render conventional antibiotics and host defenses largely 

ineffective. 
 

P. aeruginosa, another opportunistic pathogen, adds another 

layer of complexity to orthopedic infections by exploiting 

compromised skin to form robust biofilms that delay wound 

healing and promote chronic infections [26]. Noted for its 

environmental adaptability, P. aeruginosa rapidly colonizes 

surgical sites and implants, producing virulence factors such as 

proteases and elastase, which degrade host tissues and impair 

recovery [27]. Its quorum-sensing capabilities, which enable 

cell-to-cell communication within biofilms, allow the bacteria 

to coordinate biofilm formation, enhancing its resistance to 

antibiotics and immune clearance. Unlike many other 

pathogens, P. aeruginosa thrives in moist environments and 

produces dense, complex biofilms that further delay healing and 

predispose patients to chronic, treatment-resistant infections 

[28]. Compounding the issue, P. aeruginosa can synergize with 

other bacteria in polymicrobial infections, enhancing biofilm 

formation and virulence, which significantly complicates 

treatment outcomes [29]. Similarly, C. acnes, despite being a 

commensal organism, can exacerbate Saureus infections by 

producing coproporphyrin III, a molecule that facilitates S. 

aureus biofilm aggregation and further destabilizes the 

microbial balance [30]. This imbalance is particularly 

concerning because the persistence of biofilms and the 

entrenchment of infections generate sustained inflammation and 

microbial burden, which not only compromise implant integrity 

but also interfere with the natural process of osseous healing.  
 

The mechanisms driving these osseous healing failures center 

on the disruption of the natural balance between bone formation 

and bone resorption. Persistent infection and biofilm production 

drive chronic inflammation, which promotes osteoclast activity, 

leading to bone breakdown and cortical destruction [31]. At the 

same time, inflammatory mediators suppress osteoblast 

function, preventing new bone matrix deposition and impairing 

callus formation [32]. This dysregulation often culminates 

where bone regeneration is essentially absent, leaving 

structurally weakened areas vulnerable to additional damage 

[33]. Furthermore, bacterial pathogens exacerbate these effects 

through the production of toxins that cause tissue necrosis and 

compromise blood flow, limiting the delivery of nutrients and 

antibiotics to the infection site. The vascular impairment creates 

dead space within the bone, fostering bacterial proliferation and 

biofilm maturation, which further entrenches infection [34]. In 

advanced stages, the interaction between bacterial colonization, 

biofilm protection, and inflammatory damage erodes the bone’s 

ability to support hardware, increasing mechanical stress and 

driving implant failure. Understanding the intricate role of the 

skin microbiome in maintaining immune homeostasis highlights 

how its disruption can predispose to these orthopedic 

complications. Dysbiosis not only compromises the protective 

barrier of the skin but also facilitates the invasion and 

colonization of opportunistic pathogens. These pathogens 

exploit disrupted tissue environments to drive infection and 

biofilm formation, ultimately contributing to the osseous 

healing complications of non-union, malunion, and hardware 

failure, adding significant challenges to the management of 

orthopedic infections. 

Mechanisms of Dysbiosis Development 

Failure to control the skin microbiome is a well-established 

contributor to surgical site infections (SSIs) [35]. While 

preoperative antiseptics are essential for preventing infections, 

they also disrupt the delicate balance of skin microbiota. Among 

commonly used antiseptics, chlorhexidine (CHX) stands out for 

its longer-lasting effects and broad-spectrum antibacterial 

activity, often making it the preferred choice over povidone-

iodine (PVI) in many surgical settings [36]. However, there is 

growing concern over the potential for microbial resistance to 

antiseptics, necessitating further investigation into their long-

term efficacy. Studies have highlighted that PVI significantly 

disrupts bacterial communities at surgical sites, reducing 

commensal organisms such as S. epidermidis [37,38]. Although 

beneficial for sterility, this reduction in microbial diversity 

raises concerns among clinicians, particularly in orthopedic 

procedures where maintaining a balanced microbiota is essential 

to reduce susceptibility to opportunistic pathogens. Recent 

evidence supports CHX as an effective preoperative antiseptic, 

with no increased risk of SSIs associated with its use [39]. 

Understanding the interplay between antiseptic use and 

microbial diversity remains vital for optimizing infection 

control strategies. 
  
Prolonged hospital exposure is also a key contributor to 

microbiome imbalance, largely due to the heightened prevalence 

of drug-resistant organisms in these settings. The overuse of 

antibiotics, particularly broad-spectrum agents, significantly 

reduces the abundance of normal skin flora such as S. 

epidermidis and C. acnes, while simultaneously increasing 

susceptibility to antibiotic-resistant pathogens [40]. These 

commensal organisms play a crucial role in maintaining 

microbial balance, and their depletion creates an environment 

vulnerable to dysbiosis. Nosocomial factors further exacerbate 

this disruption by exposing patients to opportunistic pathogens, 

such as S. aureus (including methicillin-resistant S. aureus 

[MRSA]) and P. aeruginosa, which are frequently encountered 

in hospitals [41-43]. Moreover, the intrinsic and acquired 

resistance mechanisms of these organisms further complicate 

treatment, placing additional strain on infection prevention 

efforts. These pathogens often colonize immunocompromised 

patients and those with pre-existing conditions, exploiting the 

disrupted microbiome to increase the risk of infections [44]. For 

orthopedic surgery patients requiring inpatient care, the dual 

burden of prolonged hospital exposure and antibiotic use 

increases their postoperative risk of developing SSIs, 

highlighting the need for infection control strategies, especially 

for immunocompromised patients. 
 

Operating room sterilization protocols and air circulation 

systems are critical in maintaining microbial equilibrium and 

reducing SSIs, with advanced High-Efficiency Particulate Air 

(HEPA) filtration systems demonstrating significant efficacy in 

removing airborne microorganisms [45]. Unidirectional or 

laminar airflow systems, particularly those with flow stabilizers, 

have shown remarkable potential in minimizing intraoperative 

bacterial contamination by creating a continuous clean airflow 

over the surgical field [46]. Having a unidirectional current over 

the surgical field would minimize a patient getting continuously 

exposed to the same pathogen, decreasing a patient’s risk for 

post-surgical complications and implant rejection. Single large 

diffuser systems have been empirically proven to outperform 

multi-diffuser arrays in removing microbes [47]. This highlights 

the importance of strategic air delivery mechanisms in  

 
Ameri J Clin Med Re, 2025                                                          ISSN: 2835-9496                                                                            Vol. 5(1): 3 of 8 



 
 

Citation: Misra R, Rasmussen J, Daly P, Brutti J, Sripadrao S, et al. (2025) The Role of Skin Microbiome Dysbiosis in Orthopedic 

Implant Failure and Infection. J Clin Med Re: AJCMR-179. 
 

maintaining surgical sterility. The complex interplay between 

air circulation design, sterilization techniques, and microbial 

control represents a crucial frontier in preventing orthopedic 

implant-associated infections. Emerging research continues to 

refine our understanding of these intricate microbiological 

dynamics, underscoring the need for adaptive and evidence-

based approaches to operating room sterilization.  
 

Patient-related factors, such as diabetes and rheumatologic 

diseases, can significantly influence the microbiome and impact 

outcomes in orthopedic surgery. Diabetes alters the microbiome 

and immune response through impaired immune function 

caused by elevated blood glucose levels, which weaken the 

body’s ability to combat bacteria at surgical sites. 

Complications, like peripheral vascular disease and peripheral 

neuropathy, further hinder wound healing and increase infection 

risk. This can often be seen in foot and ankle surgeries, where 

pre-existing foot ulcers and neuropathy elevate the likelihood of 

postoperative infections [48]. Obesity, another critical factor, is 

associated with increased SSIs in procedures, such as hip and 

knee arthroplasty, due to poor blood supply to adipose tissue, 

which delays wound healing [49]. Similarly, autoimmune 

diseases like rheumatoid arthritis and lupus, heighten the risk of 

infection after surgery, as the compromised immune system 

struggles to fight off bacteria [50]. This risk is exacerbated by 

immunosuppressive medications often used to manage 

autoimmune conditions. Collectively, these causes and triggers 

create a challenging surgical environment by altering the 

microbiome, impairing healing, and increasing susceptibility to 

infections. 
 

Strategies for Preventing and Managing Microbiome 

Dysbiosis 

Microbiome restoration through probiotics, prebiotics, and 

bacteriophage therapies represents a promising approach for 

mitigating dysbiosis. Probiotics, which introduce beneficial 

microbes, have shown the potential to reduce pathogen 

colonization by restoring commensal populations. Topical 

probiotics containing Lactobacillus species exhibit 

antimicrobial activity against S. aureus and P. aeruginosa while 

promoting skin barrier function [51,52]. Prebiotics, which 

provide substrates for beneficial bacteria, enhance microbial 

diversity and facilitate microbiome recovery. Novel strategies 

are utilizing nanocarriers to optimize the topical application of 

probiotics and prebiotics [53]. These nanocarriers, such as 

nanoparticles or nanoemulsions, increase skin penetration, 

maximizing efficacy to help establish a protective barrier. In 

addition, bacteriophage therapies offer a highly targeted method 

for eradicating biofilm-associated pathogens, while sparing 

commensal microbes. Phages engineered to target S. aureus 

biofilms have demonstrated efficacy in preclinical models for 

treating wound infection, suggesting possible utility in 

microbiome-preserving interventions [54]. These advancements 

underscore the potential of microbiome restoration therapies as 

a cornerstone for combating dysbiosis while preserving the 

integrity of commensal microbial ecosystems. 
  
Biofilms are structured communities of bacteria encased in 

extracellular polymeric substances, which enhance bacterial 

survival by protecting against immune defenses and 

antimicrobial agents. This creates a persistent infection 

environment, promoting implant failure and nonunion, 

particularly when complete debridement or hardware removal is 

not achieved [55]. Nonunion, characterized by the failure of a 

fractured bone to heal within a typical timeframe, is exacerbated 

by persistent biofilm infections. This property of bacteria 

impairs osteogenesis and induces chronic inflammation at the 

fracture site [56]. To combat the challenges of biofilm-

associated infections and their role in surgical failures, 

orthopedic advancements have focused on both innovative 

surgical techniques and preventative measures. These efforts 

have extended to the development of antimicrobial technologies, 

such as implant coatings and microbiome-preserving skin 

preparations. 
 

Antimicrobial innovations, including implant coatings and 

microbiome-preserving skin preparations, are critical in 

preventing pathogen colonization without disrupting 

commensal balance. Antimicrobial coatings, such as release-

based systems on orthopedic implants have been developed to 

inhibit antibacterial activity. These implants are coated with 

antibiotics or antimicrobial peptides that can be released in a 

sustained manner to maintain high concentrations of 

antimicrobial substances around the implants [57]. Moreover, 

specific components, such as polyethylene oxide, can be used 

on the surface of implants. Polyethylene oxide prevents bacterial 

attachment and biofilm development, repelling bacterial agents 

from implant surfaces [58]. This is one of many substances 

developed in the orthopedic field to prevent biofilm formation 

on implants, with the goal of reducing SSI and hardware failure. 

Additionally, microbiome-preserving skin preparations are 

designed to maintain the delicate balance of the skin’s microbial 

ecosystem, focusing on formulations that minimize disruption 

to commensal organisms while targeting pathogens. 

Microbiome-derived ingredients, such as prebiotics and 

postbiotics, are being explored to support skin homeostasis, by 

fostering beneficial microbial interactions and minimizing the 

disruption caused by external factors [59]. These innovations 

offer a dual benefit, reducing infection risk while preserving the 

protective functions of the native microbiome. 
  
Other emerging prevention strategies include metagenomic 

sequencing, a high-resolution tool for analyzing microbial 

communities that holds promise for developing individualized 

care plans for patients prone to microbiome dysbiosis. By 

examining the DNA profiles of all organisms in a sample, this 

technology enables researchers to assess the microbial 

composition of a given environment. Early identification of 

dysbiosis, often seen in inflammatory skin conditions, allows for 

timely interventions to preserve the natural skin microbiome and 

reduce the risk of associated disorders. Patterns of dysbiosis 

linked to inflammatory skin diseases are increasingly associated 

with functional and strain-level variations identified through 

metagenomics [60]. Metagenomics can also precisely 

characterize microbial communities at wound sites. Recent 

studies have identified specific strains of S. aureus that correlate 

with poor wound healing outcomes [61]. In orthopedic surgery, 

metagenomic sequencing holds significant potential for 

developing personalized care plans tailored to patients at risk of 

SSIs due to skin dysbiosis, potentially reducing SSI rates. 

Despite some metagenomic sequencing studies demonstrating 

the stability of skin microbial communities at the strain and 

species level, even amidst environmental exposures [62], further 

research is needed to fully explore and validate the role of this 

technology in personalized care strategies for at-risk individuals 

within surgical settings. 
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Clinical Implications and Outcomes 

Surgical site infections are a common complication, 

underscoring the critical importance of integrating microbiome 

preservation into perioperative protocols. Most infections are 

attributed to bacteria already present in the patient’s microbiome 

rather than from external sources introduced during surgery 

[63]. One theory about the cause of perioperative infections is 

the endogenous translocation of strains can occur after surgery 

[64]. The Trojan Horse Hypothesis of SSIs states that pathogens 

from areas such as the gums, teeth, and gastrointestinal tract can 

be taken up by immune cells, such as neutrophils and 

macrophages, and can bring the bacteria to the wound site after 

a procedure [64]. This reveals the importance of also preserving 

the microbiome in places other than the surgical site, specifically 

the importance of dental hygiene. Current protocols to prevent 

infection during a procedure often focus on exogenous sources 

of bacteria [64]. Preserving the microbiome has been shown to 

enhance wound healing, reduce risk of infection, and improve 

long-term outcomes. Minimizing dysbiosis, by maintaining the 

balance of the patient’s own microbiota, reduces the risks of 

SSIs and further complications [65]. Physicians can minimize 

the use of unnecessary broad-spectrum antibiotics, by 

implementing targeted prophylaxis regimes, and incorporating 

perioperative probiotic supplementation strategies [65]. Young 

Khadaroo (2014) also reports that by maintaining the 

microbiome, the risk of biofilm formation is minimized, leading 

to improved implant longevity. 
 

Challenges and Limitations 

There are gaps in understanding the balance between 

preventative care and microbiome preservation. By giving 

prophylactic antibiotics before surgery, the healthcare team is 

risking the collapse of the “healthy” microbiome, which 

includes commensal bacteria. Any major disruption to the 

microbiome can lead to the colonization of pathogenic bacteria 

[66]. A study by Krezaleck (2016) found that mice that were 

given probiotics to help maintain a healthy microbiome had a 

faster wound healing time than the control mice who did not 

receive probiotics. Damage to the microbiota has been shown to 

stimulate the production of overactive neutrophils, potentially 

resulting in excessive tissue injury [66]. Even though 

prophylactic antibiotics can prevent hospital transmission of 

infection, they can also harm the patient by disrupting their 

natural flora. There is also limited clinical data on the efficacy 

of microbiome-targeted interventions. There is little research on 

virulence factors and how they impact the likelihood of SSIs 

[63]. With limited research into this topic, clinicians who 

practice evidence-based medicine, will be less likely to employ 

these new techniques. Randomized trials that look into the 

effectiveness of targeted prophylaxis and perioperative 

probiotic supplementation in reducing the risk of infection need 

to be continued. 
 

Metagenomics and RNA sequencing can help sequence variants 

to be monitored. A map of the migration of microbes can be 

made including the original site to the surgical wound [64]. 

Correct identification of the affecting bacteria is necessary for 

appropriate treatment. Bacteria within biofilms are more 

difficult to identify. Diagnostic methods, such as tissue sampling 

and culture, have led to false negative results [67]. Misdiagnosis 

and delayed results can lead to worsening of the infection or 

incorrect treatment regimes. These advanced diagnostic tools, 

such as microbial modeling, specifically BioSolve, can provide 

a high degree of transparency [68]. The cost of modeling 

technology varies depending on the microbe it is analyzing [68]. 

Depending on the specific microbiome, the user may wish to use 

different techniques. This makes it harder to come up with a 

standardized way for clinicians to find information and 

implement protocols. 
 

Future Directions 

The growing understanding of the role of the skin microbiome 

in orthopedic implant outcomes opens new avenues for research 

and clinical innovation. Future studies should aim to explain the 

precise mechanisms that skin microbiome dysbiosis contributes 

to SSIs and implant failures. Advanced molecular tools, such as 

metagenomic sequencing and single-cell RNA sequencing, can 

help identify the specific microbial strains and gene expression 

patterns associated with biofilm formation and chronic 

infections. Additionally, longitudinal studies tracking 

microbiome dynamics pre- and post-surgery could provide 

critical insights into how antiseptic protocols, perioperative 

antibiotics, and environmental factors affect microbial balance. 

After these initial microbiome studies are conducted, precision 

medicine approaches should also be explored, leveraging 

predictive microbial modeling to identify high-risk patients and 

tailor perioperative protocols accordingly. Incorporating 

microbiome assessments into preoperative risk evaluations may 

allow for the implementation of personalized infection 

prevention strategies, ultimately improving patient outcomes in 

orthopedic surgery. 
 

Conclusion 

The interplay between the skin microbiome and orthopedic 

surgical outcomes represents a critical, yet underappreciated, 

frontier in modern medicine. Dysbiosis of the skin microbiome 

contributes to biofilm formation, chronic infections, and implant 

failures, underscoring the importance of preserving microbial 

homeostasis throughout the perioperative period [19, 55]. 

Emerging strategies, such as microbiome-preserving antiseptics, 

antimicrobial implant coatings, and advanced therapeutics like 

bacteriophages and probiotics, offer exciting opportunities to 

mitigate these risks [9,51,53]. A multidisciplinary approach that 

integrates microbiome science, material innovation, and clinical 

expertise is paramount for advancing infection prevention in 

orthopedic surgery. While challenges remain, including the need 

for robust diagnostic tools and the translation of novel therapies 

into widespread clinical use, ongoing research is steadily paving 

the way for transformative changes in surgical care. By 

prioritizing microbiome health, clinicians can enhance patient 

outcomes, reduce healthcare costs, and ensure the long-term 

success of orthopedic implants. 
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