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1. Introduction 

Anemia is a major public health priority, with a global 

prevalence of nearly 2 billion cases across all age groups (1–4). 

There are many etiologies underlying anemia manifestations in 

the clinic, including age, infection, inflammation, trauma, 

dietary intake, pregnancy, and host genetics (5,2). Enhanced risk 

of mortality is seen in elderly patients who present with anemia 

and comorbidities (5–9). The most common cause of anemia is 

iron deficiency, especially in pediatric cases (10–14). 

Nutritional anemias can also manifest due to dietary deficiency 

in pyridoxine (15,16), folate (17–19), or cobalamin (20,21). 

Infectious agents, including parvovirus (22,23), Plasmodium 

spp. (24–27), and schistosomes (28–30) as well as improper 

inflammatory responses (31) comprise leading causes of 

acquired anemias. Reproductive biology status in women 

contribute to global anemia rates as well, compounded by 

altered prenatal vitamin and mineral requirements during 

pregnancy terms (32–35). As might be expected for a phenotype 

derived from such a wide berth of etiologies, the precise 

definition of anemia in the clinic can be quite variegated, 

ranging from decreased serological hemoglobin, abnormal mean 

corpuscular volume (MCV), and/or atypical red blood cell 

(RBC) morphology (36). 
 

The inherited anemias are dictated by germline transmission and 

thus are reliant upon host genetics (37). The elucidation of the 

precise genetic lesions underpinning the various inherited 

anemias is an ongoing process, with past estimates of 

approximately 70 distinct genetic loci collectively responsible 

for the inherited anemias (37). A multitude of molecular, 

cellular, and physiological mechanisms constitute the inherited 

anemias (37). Defects in RBC formation rates by attenuated 

erythropoiesis are well documented in several inherited 

anemias, including Fanconi Anemia (38–42), Diamond-

Blackfan Anemia (43–46), and Congenital Dyserythropoiesis 

Anemia (47,48). Additionally, prior to terminal RBC 

differentiation stages, erythropoietic progenitors must 

synthesize not only hemoglobin tetramers but also execute 

sufficient heme biosynthesis (49–51). Defective heme 

anabolism constitutes many inherited anemias of the 

sideroblastic form (52,53). Conversely, inherited anemias can 

manifest as a block on normal removal rates of mature RBCs. 

Enhanced rates of erythrocyte destruction via hemolysis, 

typically by splenic macrophages in the red pulp, are seen 

clinically in cases involving hemolytic-uremic syndrome (54), 

hereditary spherocytosis (55,56), and glucose-6-phosphate 

dehydrogenase (G6PD) deficiency (57,58). At an erythrocyte 

operational level, mutations that alter either the amount or the 

function of the hemoglobin tetramer comprise the 

globinopathies: Sickle-Cell Anemia (59), α-thalassemia (60–

62), and ß-thalassemia (63–66). Inherited anemias can also 

manifest indirectly from extensive blood loss as seen in 

hemophiliacs (67–69) due to misregulated clotting cascades, or 

in patients suffering from Von Willebrand disease due to 

attenuated clotting at the subendothelial layer (70). In related 

fashion, repeat wound formation can increase patient risk of 

anemia development. In patients diagnosed with epidermolysis 

bullosa, genetic defects in sustaining structural connectivity of 

the epidermis to the dermis results in detachment of the two 

layers, which constitutively contributes to low-grade bleeding 

complications, and thus greater risk for bouts of anemia (71–73).  
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Abstract 
Anemia represents a medical challenge due to a significant myriad of etiologies underlying its clinical presentation. Leading 

causes of anemia manifestations include nutritional deficiencies, infectious disease agents, and host genetics. In the latter case, 

numerous genes are associated with the various inherited anemias, and each genetic hematologic disorder mechanistically 

manifests with unique disease pathophysiology patterns accompanying key modes of anemia manifestation. Here we provide a 

quantifiable framework to classify nearly 200 anemia-enriched genes based on their allelic categorical distributions and 

permutation pattern of clinical manifestations. Our work leverages a convergence of multivariate statistical tools married to 

applied mathematical approaches in the form of topological data analysis to detect gene similarity interactions and connectivity 

networks. Such a systems bioinformatics approach permits an investigation of the relationship amongst anemia-enriched genetic 

loci which further grants the means for taxonomic classification to relate genotype to phenotype. In doing so, our bioinformatics 

pipelines are also able to reconstruct the molecular complexity of both the canonical and non-canonical anemias in a quantifiable 

fashion. 
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In patients diagnosed with mitochondrial diseases, such as 

POLG-related disorders, the presentation of anemia in the clinic 

nearly quadruples the risk of patient mortality compared to 

mitochondrial disease patients that do not present with anemia 

manifestations (74–76). 
 

For the inherited anemias alone, there is thus an expansively, 

disparate and complex set of genetic and molecular factors 

underlying a shared anemia manifestation in the clinic. In turn, 

not every genetic locus drives the inherited anemia phenotype to 

the same degree, and within a single locus, allelic penetrance is 

quite variable, ranging from null lesions to subtle hypomorphs 

to silent polymorphisms. Here we report on a systems biology 

approach to taxonomically classify the various etiologies of the 

numerous inherited anemias in a quantitative manner that 

addresses allelic variability as well as loci-associated 

phenotypes. 
 

2. Materials and Methods  

All custom python source code used in this article for loci 

scraping, data collation, bioinformatics analyses, and data 

visualization are freely available for examination and can be 

downloaded at 

https://github.com/VitamOrdinatio/inherited_anemias 
 

2.1. Data acquisition of anemia loci 

2.1.1. Scraping the Genetic Testing Registry (GTR) for 

anemia conditions 

We leveraged the Genetic Testing Registry (GTR) database that 

is administered by the National Institute of Health (NIH) 

National Center for Biotechnology Information (NCBI) (77). 

The GTR is a public resource that tracks clinically relevant 

genetic testing assays (77). As of late November 2024, the GTR 

database contained testing information regarding 67,624 genetic 

assays for 26,106 genetic conditions comprising 18,705 

underlying gene etiologies (77). Search queries against the GTR 

database can be further filtered using integration with the Online 

Mendelian Inheritance in Man (OMIM) and NCBI 

GeneReviews, both of which represent high quality, manually 

curated databases (77–79). We wrote custom python scripts 

using the python requests and beautifulsoup4 modules to 

sequentially scrape NCBI GTR for three query terms (i.e., 

anemia, willebrand, and hereditary factor) with OMIM and 

GeneReviews filter facets toggled on (77–79). Our scrape at this 

stage yielded a total of 178 unique genetic conditions with some 

degree of hematological disorder manifestation of the highest 

curation status (77–79). 
 

2.1.2. Scraping GTR conditions for associated anemia gene 

etiology 

To programmatically retrieve the underlying genetic loci 

responsible for our scraped list of 178 hematological disorders, 

we performed a second scrape operation against the NCBI GTR 

database (77). A custom python script scraped all monogenic 

and polygenic etiologies underlying each genetic condition. We 

next manually collated several conditions arriving at a list of 164 

unique genes across 170 unique genetic conditions. Two entries 

(H19-ICR and HBB-LCR) were removed as they represented 

regulatory control elements rather than protein-encoding genes. 
 

2.1.3. MitoCarta collation 

MitoCarta is a database that tracks 1,136 nuclear-encoded 

mitochondrial gene products in the human condition (80–82). 

Approximately a third of the genetic loci obtained in our original 

anemia loci scrape were found on the MitoCarta roster. 

Additionally, mitochondrial DNA (mtDNA) genes from the 

Cambridge Reference Sequence (CRS) were also found in the 

original NCBI GTR scrape for anemia-enriched loci (83–85). 

Pearson syndrome (OMIM #557000) represents a sideroblastic 

anemia driven by large mtDNA deletions manifesting as lesions 

across the 37 essential mtDNA loci (86–88). In eukaryotes, all 

mtDNA replication is accomplished via the catalytic POLG 

subunit of the mtDNA polymerase complex. The POLG-related 

disorders include Alpers-Huttenlocher (OMIM #203700), 

MNGIE (OMIM #613662), SANDO/SCAE (OMIM #607459), 

autosomal dominant progressive external ophthalmoplegia 

(adPEO, OMIM #157640) and autosomal recessive PEO 

(arPEO, OMIM #258450) (76,75). Previous work indicated that 

roughly 2/3rd of all examined POLG patients exhibited anemia, 

and suffered from a nearly four-fold decrease in survivorship 

when compared to POLG patients without anemia presentations 

(74). We thus collated POLG1 (aka POLG), POLG2, and all 37 

mtDNA loci to our list of GTR-scraped anemia loci, resulting in 

a final anemia locus list composed of 199 unique genes linked 

by varying degrees of hematological disorder significance. 
 

2.1.4. Scraping ClinVar for categorical allele distributions 

The NCBI ClinVar database is a public repository that archives 

documented gene sequence variations following nomenclature 

standards established by the Human Genome Variation Society 

(HGVS) under the auspices of the Human Genome Organization 

(HUGO) (89–92). A dedicated ClinVar accession number is 

assigned to each unique gene variant along with useful metrics 

such as disease classification and molecular lesion type (92). 

Although an application programming interface (API) exists for 

ClinVar, we utilized custom python scripts to scrape the ClinVar 

site of data pertaining to our master anemia locus list (91). For 

any given allele, ClinVar provides an estimation of clinical 

disease significance (92,93). We specifically removed alleles of 

the uncertain significance or the conflicting classification 

categories (92,93). Thus, we retrieved a total of 112,534 unique 

alleles across 199 anemia loci, and each allele exhibited a 

ClinVar disease classification of either 1) benign, 2) likely 

benign, 3) likely pathogenic or 4) pathogenic. 
 

2.1.5. Gene ontology (GO) and gene set enrichment analysis 

(GSEA) 

The Human Phenotype Ontology (HPO) database tracks over 

18,000 unique phenotype abnormality terms related to human 

disease (94). Gene ontology (GO) is a bioinformatics taxonomy 

approach to systematically assess how different genes and their 

corresponding gene products behave across different databases, 

including HPO (94–96). Historically, gene set enrichment 

analysis (GSEA) was pioneered for transcriptomic experiments 

that yielded read counts for each expressed locus (95,96). 

However, functional enrichment analysis can still be performed 

on simple gene lists sans read count data using the g:Profiler 

g:GOSt platform (97). We performed GSEA on our list of 199 

anemia loci using g:GOSt and pulled down the enrichment 

analysis results for just the HPO terms (94,97). Of 18K possible 

HPO terms, a total of 619 unique HPO enrichment terms for 

each locus on our anemia list of 199 genes were extracted with 

statistically-significant adjusted p-values (i.e., padj) per standard 

g:GOSt settings (94,97). 

2.2. Analytical pipeline for the scraped ClinVar alleles 

The ClinVar dataset comprised exactly 112,534 unique alleles 

spanning 199 unique anemia-enriched genes with each allele 

assigned one of four possible ClinVar disease severity 

classifications: benign (B), likely benign (LB), likely pathogenic  
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(LP), and pathogenic (P). Our analytical pipeline for the scraped 

ClinVar allelic set consisted of 1) standard visualization 

methods, 2) multivariate statistical analyses (MSA), and 3) 

topological data analysis (TDA). Source code for all steps can 

be found on our GitHub page. All graphical plots were generated 

using a combination of pythonic matplotlib, seaborn, and 

pyCirclize modules. 
 

2.2.1. Standard visualization of ClinVar anemia alleles 

Raw allele counts or relative ClinVar categorical allele 

frequencies were visualized per each of 199 anemia loci. 

Dataframes were sorted in descending order contingent on allele 

counts or normalized allele frequencies using python’s pandas 

and numpy libraries. Pythonic seaborn pairplots were generated 

for pairwise comparisons for any two retained ClinVar disease 

categories (i.e., benign, likely benign, likely pathogenic, and 

pathogenic).  
 

2.2.2. Multivariate statistical analysis (MSA) of ClinVar 

anemia alleles 

A suite of multivariate statistical tools was employed using 

various python libraries customized for the scraped ClinVar 

anemia allelic dataset.  

2.2.2.1. Correlation coefficients 

Correlation coefficients (r) were generated using the python’s 

pandas library with dataframe class-defined correlation 

methods. Heatmaps of resulting correlation coefficient 

relationships for each pairwise ClinVar allelic categorical 

comparison was generated using python’s seaborn library.  

2.2.2.2. t-Distributed Stochastic Neighbor Embedding (t-SNE) 

Simultaneous dimensional reduction and potential cluster 

identification can be achieved using the machine learning 

algorithm known as t-distributed stochastic neighbor embedding 

(t-SNE) (98–100). To implement t-SNE on the ClinVar anemia 

allelic dataset, we leveraged python’s sklearn.manifold TSNE 

module with a learning rate initialized to 50, and graphically 

visualized the t-SNE results using various seaborn and 

matplotlib functions.  

2.2.2.3. Principal component analysis (PCA) 

Principal component analysis (PCA) is another statistical 

method that effectively reduces dimensionality of the original 

dataset by grouping highly correlated variables into principal 

components (101–103). For programmatic PCA 

implementation, we utilized several tools in the pythonic sklearn 

module, including StandardScaler and MinMaxScaler methods, 

as well as the sklearn.decomposition PCA method. Explained 

variance ratios, and relationships amongst each principal 

component (PC) following decomposition of the ClinVar 

anemia allelic dataset were extracted using PCA pythonic class 

attributes. Pairwise scatter plots between any two of four 

principal components were visualized using pythonic seaborn 

and matplotlib graphical methods. 

2.2.2.4. PCA-reduced k-Means clustering 

The k-means clustering method is an algorithmic approach to 

grouping data points into clusters contingent on their distance to 

defined centroids (104–107). For detecting such patterns across 

the ClinVar categorical allele counts derived from 199 anemia 

genes, unsupervised learning using k-means clustering 

operations was performed leveraging the python sklearn.cluster 

library, Kmeans. To maximize aggregate cluster generation by 

the k-means algorithm, we leveraged the first two of four 

principal components to reduce the dimensionality of the 

original ClinVar anemia allelic dataset (101–103). A 

programmatic pipeline was constructed using the 

sklearn.pipeline method known as Pipeline which permits user-

friendly arguments and parameters passed to different pipe 

segments of the pipeline. In this case, we generated a 

preprocessor pipe segment that utilized a MinMaxScaler and a 

restriction to employ only the first two principal components, 

followed by a clusterer pipe segment with the following 

initialization settings to maximize reproducibility: init set to ‘k-

means++’ to accelerate convergence, n_clusters set to six cluster 

targets, n_init set to 50 initializations which returns the results 

with the lowest sum of the squared error (SSE), and max_iter set 

to 500 to control the maximum number of iterations that are 

executed for each initialization of the k-means algorithm. 

Scatterplots of PCA-filtered k-means clustering of the ClinVar 

anemia allelic dataset were generated using pythonic seaborn 

and matplotlib module functions. 
 

2.2.3. Topological data analysis (TDA) of ClinVar anemia 

alleles 

Topological data analysis (TDA) is a non-statistical, advanced 

geometry method that can investigate the shape of data using a 

given distance metric. In the life sciences, TDA as an applied 

mathematical tool has been broadly utilized for research on 

cancer, medical imaging, molecular structures, and organismal 

biology (108–110). Of note, TDA resembles PCA as both are 

fully capable of dimensionality reduction while vastly differing 

in implementation. For the scraped ClinVar dataset, which 

comprised 112,534 anemia alleles across 199 anemia loci, each 

anemia allele has an exclusive disease classification attribute of 

either benign (B), likely benign (LB), likely pathogenic (LP), 

and pathogenic (P). We first generated per-locus categorical 

allele frequencies suitable for distance matrix calculations. 

Next, we employed the pythonic kmapper (aka KeplerMapper) 

module which is capable of TDA operations (111). The 

KeplerMapper workflow generally consists of projecting the 

data, grouping the resulting image, applying a clustering 

algorithm to the preimage of the groups, and building a 

simplicial complex that summarizes gene interactions in our 

case (111). We set our mapper object to utilize 7 bins with a 25% 

overlap while the scikit.learn DBSCAN (density-based spatial 

clustering of applications with noise) method was passed an 

epsilon set to the median value from the distance matrix and a 

minimum cluster size set to 3. Python’s kmapper provides an 

interactive HTML output file that consists of nodes (aka 

clusters) that contain varying numbers of genes (i.e., node 

members). Circos plots are one way to visualize the connectivity 

data intrinsic to TDA, and we generated python Circos plots 

using the pyCirclize library (112–115).  
 

2.3. Analytical pipeline for the enriched HPO terms 

encountered in the scraped anemia locus list 

The HPO GSEA anemia dataset comprised exactly 619 unique 

HPO terms that exhibited varying degrees of intersecting loci 

derived from a list of 199 scraped anemia genes. Our analytical 

pipeline for this anemia locus-phenotype dataset leverages two 

overall strategies: 1) a text-mining operation coupled to 

wordcloud syntheses to visualize the most frequently 

encountered gene names and HPO phenotypic terms, and 2) 

abstraction to multidimensional space for subsequent 

connectivity mapping using TDA-digested and Circos 

visualization. Source code for all steps can be found on our 

GitHub page dedicated to this body of work. All graphical plots 

were generated using a combination of pythonic matplotlib, 

seaborn, wordcloud, and pyCirclize modules. 
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2.3.1. Standard visualization of the HPO / GSEA anemia loci 

A truth table was first generated for the g:Profiler g:GOSt 

algorithm that received the list of 199 anemia genes and returned 

GSEA metrics from the HPO database (94,97). This truth table 

was essentially a programmatic conversion of the g: GOSt 

intersections column (i.e., the gene names that exhibited HPO 

term enrichment at a statistically significant level); the resulting 

HPO truth table consisted of 199 unique rows (unique genes) by 

619 unique columns (unique phenotypes). At the intersection of 

each gene and HPO term, a value of zero indicates false and a 

value of one indicates true (i.e., the HPO term was statistically 

enriched for that locus). Next, we used the python wordcloud 

module to generate graphical visualizations for 1) the most 

frequently encountered gene names or 2) the most frequently 

encountered phenotypes across the entire truth table (i.e., 199 

genes x 619 phenotypes). For gene frequency wordcloud 

visualization, the python random library was used to rearray 

gene names followed by a standard wordcloud generation with 

interpolation set to ‘bilinear’. Graphical output of the wordcloud 

was performed using python’s matplotlib library. Stopwords 

provide a masking filter, and while no stopwords were used for 

gene name wordclouds, stopwords that removed non-specific 

terms in the names of HPO terms were employed. A list variable 

of defined stopwords can be found by examination of python 

source code archived on our GitHub page. 
 

2.3.2. Topological data analysis (TDA) of the HPO / GSEA 

anemia loci 

The HPO / GSEA dataframe was abstracted into 

multidimensional space by generating distance matrices 

utilizing the HPO / GSEA truth table that consists of 619 unique 

phenotypes by 199 unique gene names. This approach 

effectively represents each gene as a single point in 619th-

dimensional space, where each axis discretely services a unique 

HPO enrichment term. We reduced dimensionality using 

pythonic kmapper to implement TDA, and investigated the 

various TDA components for custom illustration summaries 

using BioRender or pyCirclize for Circos plot generation (112–

115). The settings for TDA operations on the HPO / GSEA data 

were identical to those employed for the ClinVar anemia alleles; 

the mapper object was set to use 7 bins with a 25% overlap and 

the scikit learn's DBSCAN was implemented as the clusterer 

with an epsilon parameter set to the median value from the 

distance matrix and the minimum cluster size set to 3 (111). 
 

3. Results 
3.1. Unique allele deposition varies across known loci 

underlying inherited anemias 

Our custom NCBI GTR scrape pipeline yielded 199 unique 

genetic loci that are associated with inherited anemias. For each 

gene, a total of six allelic categories were additionally scraped 

from NCBI ClinVar: benign (B), likely benign (LB), likely 

pathogenic (LP), pathogenic (P), conflicting classifications 

(CC) and uncertain significance (US). A total of 192,296 unique 

alleles were obtained from these six ClinVar categories, and 

across the entire 199 loci, there was an average of ~160 alleles 

per category and gene. Total allele counts per ClinVar category 

varied across genes, ranging from 0 to 5,092 unique allele 

accessions. We removed the CC and US categories, leaving us 

with a total of 112,534 alleles across 4 well-defined ClinVar 

allele categories (B, LB, LP and P). These 112,534 alleles can 

be further partitioned as 12,349 benign, 57,621 likely benign, 

10,944 likely pathogenic, and 31,620 pathogenic ClinVar allele 

classifications. More importantly, these ~110K alleles thus 

represent the best defined polymorphisms for the most curated 

anemia genes to date. A log2-transformation of total allele 

counts for each of these four ClinVar categories reveals elevated 

allele depositions for known inherited anemias, such as 

molecular members of the Fanconi Anemia complex as well as 

genes involved in Epidermolysis Bullosa (Figure 1A-1B). The 

four retained ClinVar allelic categories exhibited a propensity 

for positive correlation in pairwise fashion (i.e., r = 0.67-0.83) 

(Figure 1C). Further examination of each of the four ClinVar 

allelic categories was performed using pairplot visualization 

(Figure 2). Identity scatterplots reveal normal distributions of 

raw allele counts for each of the four ClinVar allele categories 

(Figure 2, diagonal). Pairwise scatterplots further illustrate the 

positive correlation trends for each comparison (Figure 2). 

When each of the 199 anemia-enriched genes are sorted in 

descending order based on total ClinVar allele counts derived 

for each of the 4 ClinVar categories (i.e., B, LB, LP, and P), 

seven of the top twenty loci are associated with the Fanconi 

Anemia complex (Figure 3A). Interestingly, not a single 

mtDNA gene locus was found in the top 20 list of anemia genes 

by allele count, but the POLG gene, which encodes the catalytic 

subunit of the mtDNA polymerase, was found on the list at 

position 13 (i.e., there were a total of 1600 POLG alleles: 125 

B, 1049 LB, 180 LP and 246 P categories). Raw allele counts 

are informative but do not encapsulate locus essentiality nor 

locus stringency requirements for constancy across evolutionary 

time. To better understand the overall stringency for constancy 

possessed by each of the 199 anemia genes, we calculated 

relative categorical allelic frequencies (i.e., B.freq, LB.freq, 

LP.freq, and P.freq) per genetic locus, and resorted the 

normalized loci in descending order based on the sum of LP.freq 

and P.freq, which together represent the most capacity for 

pathogenicity (Figure 3B). Viewed from a relative categorical 

allele frequency reflecting such problematics alleles (i.e., LP 

and P classifiers), mtDNA genes (MT-RNR2, MT-TL2, and MT-

TS2) comprised 3 of the top 20 loci (Figure 3B). Of note, the 

POLG locus and genes encoding the Fanconi Anemia complex 

were not found when sorted by pathogenicity frequency (Figure 

3B). The globinopathies that are clinically defined by HBA1, 

HBA2 or HBB lesions were amongst the most abundant loci by 

total allele counts (Figure 3A: HBB) or exhibited elevated levels 

of pathogenicity allele frequencies (Figure 3B: HBA1 and 

HBA2). Hemophilias characterized by clotting factor 

abnormalities in Factor VIII and Factor IX were reflected at 

elevated positions in normalized pathogenicity frequency sorts 

but did not appear in the top 20 loci when sorted by raw allele 

counts (Figure 3B: F8 and F9). Conversely, lesions afflicting the 

integrity of the extracellular matrix (ECM), or the ability to 

tether to the ECM exhibited exceptionally high total allele 

counts in our ClinVar scrape (Figure 3A: COL3A1, COL4A1, 

COL7A1 and PLEC). 
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Figure 1: ClinVar allele prevalence across 199 anemia-enriched genetic loci. 

 

Known allelic classifiers for a total of 199 anemia-enriched 

genes were systematically analyzed from the NCBI ClinVar 

database. (A): Crude visualization of loci is performed by a 

log2-transformation of total allele counts derived from the sum 

of four ClinVar allelic categories: benign (B), likely benign 

(LB), likely pathogenic (LP) and pathogenic (P). Shown here are 

the most prevalent 34 loci of 199 total anemia genes. Defects in 

translesion DNA repair pathways manifests as Fanconi anemia 

and constitute some of the most defined genetic loci as measured 

by total unique allele counts. (B): A histogram plot reveals a 

normal distribution for all 112,534 unique alleles across all 199 

anemia loci. (C): Linear regression performed on all alleles 

across all anemia-enriched loci reveals positive correlation 

coefficients (0.67 – 0.83) for each unique pairwise comparison 

for any two given ClinVar categories. 
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Figure 2: Pairplot visualization of ClinVar allelic categorical frequencies across 199 anemia-enriched loci. 

 

Across all 199 anemic genes, all 112,534 alleles from each of 

four ClinVar allele categories (i.e., benign, likely benign, likely 

pathogenic and pathogenic) were visualized using seaborn 

pairplots. All four ClinVar allelic categories exhibited similar 

allelic prevalence distributions as shown in diagonal identity 

plots (green). Linear regressions are shown using best-fit lines 

(red). 
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Figure 3: ClinVar allelic sorts by total allele counts or pathogenicity frequency. 
 

(A): The top 20 genes, comprising of roughly 10% of the entire 

anemia loci set, were visualized by their sums of well-defined 

ClinVar allelic categorical assignments. Germline inherited 

lesions in BRCA1, BRCA2, FANCA, PALB2, BRIP1, and 

FANCD2 result in defective translesion DNA repair which in 

turn potentiates DNA instability in afflicted patients. In fact, 7 

of the top 20 genes by total allele counts manifest the inherited 

anemia known as Fanconi anemia. (B): For each anemia locus, 

relative allelic frequencies were calculated for the benign (B), 

likely benign (LB), likely pathogenic (LP) and pathogenic (P) 

allelic categories. The frequency sum of normalized LP and P 

categories was used to determine which genes constituted the 

most problematic allele burdens on a per-locus basis. Canonical 

anemias including the globinopathies and thalassemias (i.e., 

HBA1 and HBA2), Fanconi anemia (i.e., BRCA1), Diamond-

Blackfan anemia (i.e., RPS17) and clotting abnormalities (i.e., 

factors F8 and F9) comprise the top 10% of all anemia-enriched 

loci. Of note, mitochondrial loci (i.e., MT-RNR2, MT-TL2, and 

MT-TS2) also exhibit similar problematic allelic frequencies. 
 

3.2. Multivariate statistical analysis (MSA) of the alleles 

and loci associated with inherited anemias reveals strong 

support for clustering potential 
Sorting gene lists based on raw allele counts or normalized allele 

frequencies is useful but fails to capture the complexity of the 

entire dataset. We next examined how each of the four ClinVar 

categories [i.e., benign (B), likely benign (LB), likely 

pathogenic (LP), and pathogenic (P)], varied across all 199 

anemia loci by performing a series of multivariate statistical 

analyses (MSA). To ascertain a crude propensity for loci 

clustering, we performed t-distributed stochastic neighbor 

embedding (t-SNE) analyses on the 112,534 alleles derived 

from all 199 anemia loci while retaining each allele’s disease 

classification status (i.e, B, LB, LP, or P). As an unsupervised 

means of dimensional reduction, crude clusters can be 

visualized across both t-SNE dimensions for all alleles of the 

anemia locus cohort (Figures 4A-4B). Interestingly, the t-SNE 

clusters seem to exhibit an inversely proportional relationship 

across each of the t-SNE dimensions (Figure 4A). We next 

performed principal component analysis (PCA) on the same 

dataset (i.e., 199 loci of 112,534 alleles from 4 ClinVar 

categories). Explained variance ratios for the interactions of 

each of four various principal components (PCs) illustrate that 

PC1 accounts for ~82.7% of the dataset and 91.3% of the 

variance in the dataset can be explained by PC1 and PC2 

combined (Figures 4C-4D). Pairwise comparisons of each 

principal component using pairplot scatters further depict how 

each principal component interacts with one another (Figure 5). 

Of note, PC identity scatterplots illustrate that PC2, PC3 and 

PC4 are normally distributed, while PC1 is skewed (Figure 5, 

diagonals). Taken together, t-SNE thus illustrates cluster 

potential in an unsupervised fashion while PCA reveals overall  
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explained variance contributions. Like t-SNE methodology, k-

means clustering algorithms act in an unsupervised fashion but 

can be benefit from PCA-mediated dimensional reduction 

techniques. As the first two principal components in PCA 

account for >90% of the explained variance in the anemia 

dataset (i.e., 199 genes of 112,534 alleles in 4 ClinVar 

categories), we first reduced the dimensionality of the anemia 

allelic dataset and then performed iterative k-means clustering 

operations (Figure 6). A total of six distinct clusters is seen with 

some adjoining clusters (i.e., cluster 0 and 3) while others like 

cluster 1 and 4 are quite distant (Figure 6). 

 

 
 

Figure 4: Principal component analysis and t-SNE visualization of ClinVar allelic categories across 199 anemia-enriched loci. 
 

Dimensional reduction tools reveal the levels of variance found 

in the ~100K alleles comprising known ClinVar allelic 

categories across ~200 anemia loci. (A-B): Dimensional 

reduction using t-SNE indicates high potential for cluster 

definitions as evidenced in scatterplots and boxplot variance 

assessments. (C-D): Principal component analysis (PCA) 

reveals that PC1 and PC2 together account for >90% of the 

explained variance, of which PC1 alone sustains ~82.7%. Of 

note, PC1’s ruleset indicates approximately equal weights 

applied to all four ClinVar categories for all alleles of anemia 

loci. 
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Figure 5: Pairplot visualization of principal components following PCA of ClinVar allelic categories across 199 anemia-enriched 

loci.  

 

Scatter diagrams for each pairwise principal component (PC) 

provide a framework to visualize the relationships between each 

comparison, revealing how data points vary for each PC’s 

dimensions alongside an assessment of correlation trends (i.e., 

positive or negative). Diagonal plots are PC identity scatterplots 

that reveal specific PC distribution patterns: PC1 exhibits a 

skewed distribution while PC2-PC4 are normally-distributed. 

For unique pairwise comparisons, PC1’s relationship is 

equivocal to all other PCs. A subtle positive correlation can be 

seen for PC4 when compared against either PC2 or PC3. 
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Figure 6: Visualization of ClinVar allelic categories across 199 anemia-enriched loci via PCA-filtered, k-means clustering. 

 

Principal component analysis (PCA) reveals that PC1 and PC2 

together account for ~91% of the explained variance ratio across 

all 4 ClinVar allele categories for each of the 112,534 alleles 

derived from all 199 anemia genes. An unsupervised machine 

learning algorithm known as k-means clustering can then be 

applied on the dimensionally reduced dataset by retaining only 

PC1 and PC2. Six clusters are seen here, with cluster 1 (orange) 

distally located to all other centroids. Meanwhile, cluster 3 (red) 

exhibits short mathematical distances to cluster 0 (blue) 

indicating a higher degree of similarity. 
 

3.3. Topological data analysis (TDA) of the alleles and loci 

involved in inherited anemias defines distinct gene 

interactions 

Topological data analysis (TDA) is an applied mathematics tool 

that relies on projecting data to multidimensional space, and 

then reducing dimensionality to investigate how datum points 

interact with one another. In biology, TDA has been utilized in 

various subdisciplines, including oncology, structural biology, 

molecular biology, and organismal biology (108–110). Here we 

sought to project the 112,534 unique alleles drawn from 4 

ClinVar categories across 199 anemia loci into four-dimensional 

space where each axis serviced one of four normalized (i.e., 

relative) ClinVar categorical allele frequencies. In doing so, 

each genetic locus would exist as a single point in 4D space and 

with TDA-mediated dimensional reduction, we can 

mathematically investigate how the various 199 anemia loci are 

related to one another. Circos plot diagrams reveal specific gene 

connectivity interactions across a total of six distinct clusters 

(Figure 7).  

 

 

 

 

 

 

 

 

 

The six nodes and their accompanying gene occupants exhibit a 

flare configuration (Figure 8). The largest cluster (i.e., node 1) 

contained 107 genes and the smallest cluster (i.e., node 6) 

comprised only 4 loci for the ClinVar anemia allele dataset 

(Figure 8). Averages of each nodes’ ClinVar categorical allele 

frequencies (i.e., B.freq, LB.freq, LP.freq and P.freq) were 

calculated to approximate how each of the six clusters differed 

from one another. Node 1 for example is primarily defined by 

elevated levels of likely benign alleles relative to other allele 

categories while node 6 is driven mostly by high relative 

pathogenicity frequencies (Figure 8). 
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Figure 7: Circos plot of topological data analysis (TDA) of ClinVar allelic categories for 199 anemia-enriched loci. 
 

Topological data analysis (TDA) is an advanced geometry 

method that permits dimensional reduction on multidimensional 

datasets. Circos plots are a means of visualizing all node 

interactions. Connections between genes that populate different 

clusters (aka nodes) are shown in grey. A total of six clusters are 

shown here in a flare arrangement. Node definitions are plotted 

for the most distal clusters in the flare arrangement. Cluster 1 

contained the most genes and is defined by a high frequency of 

likely benign alleles (purple). In contrast, cluster 6 is defined 

primarily by pathogenic allele prevalence and harbors the fewest 

number of loci (green). 

 

 
 

Figure 8: TDA node relationships for ClinVar allelic categories across 199 anemia-enriched loci. 
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A simple flare arrangement approximates the overall gene 

relationships with respect to ClinVar categorical allelic 

frequencies in multidimensional space. Six distinct nodes are 

connected linearly with decreasing numbers of gene 

membership from node 1 to node 6. On average, node 1 (purple) 

is identified primarily by high allelic frequencies in the NCBI 

ClinVar allelic category. Meanwhile, node 6 (green) is defined 

by elevated allelic frequency levels in pathogenic allele 

categories. Numbers shown within each node are the log2-

transformed gene numbers for that node. The precise number of 

genes placed in a cluster is listed below the corresponding node. 
 

3.4. Gene set enrichment analysis (GSEA) of anemia loci 

reinforces known molecular interactions 

Reliance on purely total allele counts or normalized categorical 

allele frequencies encapsulates to a certain degree the stringency 

for a locus to resist change (i.e., mutation) but does not reflect a 

locus’ known contributions towards phenotype or clinical 

manifestation of anemia. To bolster genotype to phenotype 

functional analyses, we leveraged gene set enrichment analysis 

(GSEA) using bioinformatics tools originally inspired by 

transcriptomic studies. We used the g:GOSt method of the 

g:Profiler suite to seek out phenotypic enrichment terms for each 

of our 199 anemia loci queried against the Human Phenotype 

Ontology (HPO) database which stores over 18,000 unique 

phenotypic terms (i.e., clinical manifestations) belonging to 

various human afflictions. Datamining the HPO database with 

our 199 anemia loci using the g:GOSt algorithm revealed 23,626 

enrichment term intersections, of which 619 phenotypes were 

unique HPO terms. To visualize this dataset (i.e., 199 anemia 

genes by 619 phenotypes), we programmatically generated 

wordcloud diagrams that represented the most frequent (top 40) 

genes or phenotypes (Figure 9). In such wordcloud plots, 

relative term frequencies are approximated by relative font 

sizes. Interestingly, the most frequently observed gene names 

derived from numerous genes of the Fanconi Anemia DNA 

repair pathway, including FANCA, FANCB, FANCC, FAND2, 

ERCC4, BRCA1, BRCA2 (Figure 9A). To a lesser extent, genes 

associated with Diamond-Blackfan anemia, such as RPS10 and 

RPL11, were often frequently encountered (Figure 9A). A few 

mitochondrial DNA loci were also frequently encountered (i.e., 

MT-CO3, MT-ND1, and MT-ND4), which are of particular 

importance when considering the anemia manifestations that 

can occur in patients diagnosed with Pearson’s syndrome 

(Figure 9A). Gene ontology analysis of the frequency of 

phenotypic terms derived from the HPO database when cross-

referenced against our list of 199 anemia loci reveals expected 

terms centering around anemia (Figure 9B). 

 

 
 

Figure 9: Wordcloud visualization of statistically significant Human Phenotype Ontology (HPO) gene set enrichment analysis 

(GSEA) on 199 anemia-enriched loci. 
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Gene ontology leverages various databases that employ tagged 

features for each gene. We leveraged the Human Phenotype 

Ontology (HPO) database to systematically examine how our 

list of 199 scraped genes might exhibit statistically significant 

enrichment of phenotypic tags. To assess the results, wordclouds 

of the top 40 terms were plotted. Font sizes of terms indicate 

either gene name frequency or HPO term frequency. (A): The 

most frequently encountered genes with HPO enrichment are 

dominated by Fanconi anemia pathway loci (i.e., ERCC4, 

BRCA2, FANCA, FANCB, FANCC, etc.). Of note, the RPS10 

and RPL11 genes that are known to drive Diamond-Blackfan 

anemia are also prominent. Mitochondrial loci (i.e., MT-CO3, 

MT-ND1, and MT-ND4) are also frequently represented across 

the HPO enrichment terms; large mtDNA deletions constitute 

the molecular basis for Pearson syndrome which can present 

with anemia manifestations. (B): Of the ~18,000 unique 

enrichment terms available at the HPO database, 619 HPO terms 

exhibit statistically significant gene set enrichment values across 

the 199 scraped loci in this study. The top 40 most abundantly 

described phenotype components are illustrated here. The HPO 

terms aplasia, hypoplasia, and cardiovascular represent the most 

commonly encountered phenotypic enrichments for these 199 

loci. 
 

3.5. Canonical and non-canonical inherited anemias can be 

visualized phenotypically as distinct entities using TDA 

To investigate the behavior of each of the 199 anemia loci with 

respect to a gene’s precise possession of a unique permutation 

of statistically significant HPO terms, we projected each locus 

into 619th-dimensional space where each axis serviced a single 

phenotypic term. Leveraging TDA, we effectively reduced this 

multidimensional projection into just two dimensions, and while 

collapsing dimensionality, we captured the behavior of each 

gene with respect to one another. Twelve distinct clusters or 

nodes are observed in aggregate (Figures 10-11). Each of the 

twelve nodes is positioned in exactly one of three connected 

components: component 1 has seven nodes, component 2 

contains three nodes, and component 3 possesses two nodes 

(Figures 10-11). Close examination of each gene name found in 

each node of each component reveals a molecular reconstitution 

of canonically studied inherited anemias, such as Diamond-

Blackfan anemia and Fanconi anemia (Figure 11A-11B). For 

Diamond-Blackfan anemia, there were a total of 12 genes across 

all three nodes of component 2 that encode known large 

ribosomal subunits while 19 genes from two of three nodes of 

component 2 specify the small ribosomal subunits (Figure 11A). 

For Fanconi anemia defined by component 3, node 3.1 and node 

3.2 encapsulated 13 and 11 genes, respectively (Figure 11B). 

Pearson syndrome is characterized by a sideroblastic anemia 

caused by large scale deletions of mtDNA genes. Similarly, 

POLG-related disorders are a type of mitochondrial disease in 

which the catalytic subunit for the mtDNA polymerase complex 

is abrogated. In patients diagnosed with POLG lesions, anemia 

manifestations elevate the risk of lethality by nearly four-fold 

(74). TDA of the 619th-dimensional anemia loci / HPO 

phenotype dataset revealed a third component comprising genes 

that are critical in Pearson’s syndrome as well as POLG-related 

disorders (Figure 11C). All 37 essential mitochondrial genes 

were mapped across 6 of 7 nodes in component 1 (i.e., nodes 

1.1-1.6 but not 1.7) (Figure 11C). Of particular importance, the 

POLG locus occupied the most connected node (i.e., node 1.4) 

(Figure 11C). Taken together, TDA digestion of HPO GSEA on 

the 199 anemia loci reconstitutes known molecular interactions 

in inherited anemias of the canonical (e.g. Diamond-Blackfan 

anemia and Fanconi anemia) and the non-canonical (e.g. 

Pearson’s syndrome and POLG-related disorders) form. 
 

 
Figure 10: Circos plot of topological data analysis (TDA) performed on statistically significant Human Phenotype Ontology 

(HPO) gene set enrichment analysis (GSEA) terms for 199 anemia-enriched loci.  
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Topological data analysis is an advanced geometry method that 

permits dimensional reduction on multidimensional datasets. 

We mapped in 619th dimensional space the precise “phenotypic” 

position of each of genetic locus, and then reduced 

dimensionality by applying the TDA algorithm. A Circos 

visualization of TDA output illustrates how each gene relates to 

all other anemia loci. Of note, three distinct components with 

varying numbers of clusters (aka nodes) are visible. Component 

1 (red) is made of 7 total nodes (i.e., 1.1 – 1.7) while component 

2 (blue) consists of three nodes (i.e., 2.1-2.3) and component 3 

(green) just two nodes (i.e., 3.1 and 3.2). Gene connections 

between different nodes are shown in grey. Component 2 (blue) 

is almost entirely made up of genes that are associated with 

Diamond-Blackfan anemia. Component 3 (green) consists 

solely of genes involved in Fanconi anemia. Lastly, component 

1 (red) includes numerous mtDNA loci dispersed throughout the 

component’s node architecture as well as POLG2 and POLG1 

loci found in 1.3 and 1.4, respectively. The significance of 

mtDNA deletions manifests in both Pearson’s syndrome as well 

as POLG-related disorders. 

 

 
 

Figure 11: TDA node relationships of statistically significant Human Phenotype Ontology (HPO) gene set enrichment analysis 

(GSEA) terms for 199 anemia-enriched loci.  

 

A summary figure indicating the overall prevalence of known 

anemia genes associated with known phenotypic patterns is 

shown here. The nodes of the three components resulting from 

the TDA mapper algorithm are graphically illustrated via filled-

in circles (i.e., blue, green or red). For any given component, 

specific nodes are drawn as circles of varying diameters 

proportional to the number of genes (i.e., log2-transformed gene 

sums) placed within the node by the TDA algorithm. (A): The 

Diamond-Blackfan anemia (DBA) component is shown in blue 

and consists of 3 nodes. Nearly all genes found in each of the 

three DBA nodes contribute to either large ribosomal subunit or 

small ribosomal subunit activity. DBA patients exhibit anemia 

primarily as an erythropoietic block. (B): The Fanconi anemia 

(FA) component is shown in green and is made up of 2 distinct 

nodes. All genes found in each of the FA nodes have known 

molecular functions in DNA repair, specifically for resolving 

translesion DNA adducts. Deficits in these genes enhance 

mutagenesis rates in FA patients, and an erythropoietic block is 

implicated in anemia manifestations experienced by this cohort. 

(C): The mitochondrial function component is shown in red. The 

mitochondrial chromosome is made of 37 essential 

mitochondrial genes, and 6 of 7 nodes are enriched in similar 

HPO term permutations within this component for all 37 

mtDNA genes. A key central node (i.e., 1.4) of this component 

contains the POLG1 gene which encodes the mitochondrial 

DNA polymerase subunit. 
 

4. Discussion 

The numerous inherited anemias distinctly manifest from a 

cadre of cellular, molecular and physiological perturbations 

(36,37) (Figure 12). Cellular production rates of erythrocytes 

(aka red blood cells, or RBCs) are facilitated by erythropoiesis 

by common myeloid progenitors (CMPs) in the bone marrow of 

long bones (49,51) (Figure 12A). Defective erythropoiesis can 

thus manifest as an inherited anemia, and an erythropoietic 

block is the main driving force for anemia manifestations in 

patients diagnosed with congenital dyserythropoiesis anemia 

(47,48), Fanconi anemia (38–42,116–118), Diamond-Blackfan 

anemia (43–46,119–122), and POLG-related disorders coupled 

to anemia (74–76) (Figure 12A). Conversely, elevated rates of 

cellular destruction by splenic macrophages in the red pulp 

results in the hemolytic anemias, as seen in hereditary 

spherocytosis (55,56), glucose-6-phosphate dehydrogenase  
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deficiency (57,58), and in various forms of hemolytic-uremic 

syndromes (54) (Figure 12B). The globinopathies affect either 

the structure and function of hemoglobin subunits (i.e., Sickle-

cell anemia) or manifest due to HBA or HBB copy number loss 

(i.e., thalassemias) (59–62,64,65) (Figure 12C). Lastly, 

abnormalities in clotting action due to diminished 

subendothelial function (i.e., Von Willebrand disease) or 

attenuated clotting cascade activation (i.e., hemophilia) 

represent an additional means of manifesting anemia due to 

perturbed physiological functions (67–70,123–125) (Figure 

12D). This last category can be expanded to include other 

extensive bleeding conditions, such as epidermolysis bullosa 

(72,73,126,127). Anemia, as an inherited phenotype, is thus 

understandably complex due to the many genetic means by 

which it might manifest through the germline. Our work here 

helps establish a taxonomic framework in which to quantify the 

overall similarities amongst this wide berth of inherited 

anemias.  
 

To this end, we performed a systems bioinformatics analysis of 

the best-curated loci underlying inherited anemias. Our 

approach expanded anemia loci counts from prior 

documentation of ~70 genes to roughly 200 genes in this study 

(37). The novelty of our overall analysis is tethered to a two-

pronged approach, leveraging both multivariate statistical 

analysis (MSA) and topological data analysis (TDA) on allelic 

and phenotypic data derived from ~200 unique scraped anemia 

loci. Although both MSA and TDA effectively perform 

dimensional reduction on multidimensional datasets, each 

approach is couched in an entirely different field of either 

statistics or applied mathematics, respectively (101,108). 

Nonetheless, our bioinformatics pipeline reveals that both MSA 

and TDA converge in agreement. More importantly, our 

analytical pipeline sheds light not only on the well-documented 

(aka canonical) anemias, such as Diamond-Blackfan anemia and 

Fanconi anemia, but also on the non-canonical anemias, which 

we define as genetic disorders that exhibit poor prognostic 

outcomes when accompanied by anemia manifestations. 

Excellent examples of what we consider non-canonical inherited 

anemias include the genetic disorders that afflict the 

mitochondria, such as Pearson’s syndrome and POLG-related 

disorders (74–76,86–88). Mitochondrial diseases are typically 

thought of as a genetic disorder with primarily neurological 

manifestations, and are successfully treated as such; however, 

treating additionally for anemia presentation in afflicted patients 

with POLG-related disorders has the potential to quadruple 

patient survivorship outcomes (74). Leveraging known allele 

counts and allele frequencies, we show overall connectivity 

maps amongst genes associated with anemia manifestations 

across disparate genetic conditions. We also demonstrate a 

direct means of systematically relating phenotype to gene 

function to recapitulate known molecular functions. The utility 

of this approach should not be understated as it reveals gene 

similarities agnostic of known disease states. For instance, the 

following 10 genes from our list of 199 anemia loci are each 

implicated in anemia manifestations involving nutritional 

perturbations centered on B-complex vitamins: HCFC1, 

LMBRD1, MMAA, MMAB, MMACHC, MMADHC, MTR, 

MTRR, PRDX1, SLC46A1 (128,129). Across all 10 genetic loci, 

effective cobalamin (vitamin B12) utilization is perturbed in 

some fashion except for lesions in SLC46A1 which affect folate 

(vitamin B9) metabolism (128,129). A common clinical 

manifestation for nutritional anemias caused by inadequate 

intake of dietary cobalamin and/or folate is that of megaloblastic 

anemia (13–16,20,21). Consulting our HPO TDA analysis 

reveals that all 10 of these genes that are known to be involved 

in either folate or cobalamin utilization fall within component 1, 

spanning the three nodes 1.2, 1.3 and 1.4 (Figure 11). Thus, 

these genetic loci, which play an outsized role at the intersection 

of host genetics and adequate nutrients, are recapitulated in 

multidimensional space, and interestingly occupy adjacent 

clusters to those of the mitochondrial diseases, such as Pearson’s 

syndrome (nodes 1.1-1.6) and POLG-related disorders (nodes 

1.3-1.4) (76,86–88) (Figure 11). Perhaps this close node 

proximity should be unsurprising as the B-complex vitamins are 

essential for a wide set of biological processes, including 

mitochondrial electron transport chain activity during the 

oxidative phosphorylation (OXPHOS) stages of cellular 

respiration (76,130,131). In fact, momentary bursts in 

mitochondrial biogenesis are critical as erythropoietic 

progenitors approach RBC terminal maturation stages, as an 

expanded cellular pool of mitochondrial organelles 1) services 

cellular bioenergetic requirements for increased OXPHOS 

activity to offset elevated HBA1, HBA2, and HBB expression 

costs, and 2) facilitate four of the eight steps in heme anabolism 

in their concerted quest to assemble an adequate amount of 

functional hemoglobin tetramers (49–51,131,132). Other 

examples can help illustrate the utility of our systems 

bioinformatics analysis of inherited anemias. For instance, the 

disease condition known as epidermolysis bullosa manifests as 

ECM connectivity phenotypes resulting in detachment of the 

epidermis from the underlying dermal regions of the skin (133). 

Consequently, extensive tissue damage accompanied by 

localized, chronic bleeding complications can manifest as an 

indirect form of anemia in patients afflicted with epidermolysis 

bullosa (72,73,126,127). In our TDA digestion of HPO GSEA 

performed on anemia-enriched loci, COL7A1 and PLEC genes 

are found in node 1.3, and mutations in either gene can result in 

different disease forms of epidermolysis bullosa (Figure 11). In 

a similar fashion, VWF occupies node 1.2 while clotting factors 

IX (F9) and VIII (F8) populate 1.1 and 1.2, respectively (Figure 

11). Three genetic loci (CFH, CFHR1, and CFHR3) contribute 

to hemolytic-uremic syndrome (54,134,135), and these three 

loci occupied adjacent nodes along component 1 (i.e., CFHR1 

and CFHR3 were positioned in 1.3 next to CFH in 1.4) (Figure 

11). The proximity of loci responsible for several distinct 

genetic disorders (i.e., epidermolysis bullosa, hemophilia A, 

hemophilia B, VWF disease, and various hemolytic-uremic 

syndromes) provides a means to mathematically relate such 

otherwise seemingly disparate genetic conditions. To our 

knowledge, the approach employed in our work is thus the first 

to quantitatively measure and visualize how similar such genetic 

loci lie in phenotypic and categorical allelic multidimensional 

space with respect to the inherited anemias.  
 

The most limiting aspect of our approach lies in our original 

datamining scrape operations in which we pursued only genetic 

loci that had existing accession entries simultaneously across 

three databases: NCBI GTR, OMIM, and NCBI GeneReviews. 

For some well-studied inherited anemias, a dedicated accession 

page in a single database would preclude them from our 

analytical pipeline. For instance, iron-refractory iron deficiency 

anemia (IRIDA) is an inherited anemia that manifests as a 

microcytic, hypochromic anemia due to lesions at the TMPRSS6 

locus (136). While IRIDA as a genetic disorder exists in the 

OMIM database (OMIM #206200), and likewise, TMPRSS6 

gene is OMIM-cataloged (OMIM *609862), there is a striking 

lack of a dedicated IRIDA accession at NCBI GeneReviews.  
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Therefore, TMPRSS6 as a gene involved in IRIDA forms of 

microcytic anemia was missing in our list of 199 anemia loci, 

and thus we did not capture how TMPRSS6 might interact with 

other anemia genes in our systems bioinformatics analytical 

pipeline. Similarly, of the eight genes involved in the heme 

biosynthesis pathway utilized by erythropoietic progenitors (i.e., 

ALAS2, ALAD, HMBS, UROS, UROD, CPOX, PPOX, and 

FECH), only the UROS locus was captured in our NCBI GTR 

scrape (50,51). Lesions at all eight loci typically manifest with 

varying degrees of sideroblastic forms of anemia and are thus 

important when considering a comprehensive classification 

scheme for anemias of genetic etiologies (50–53). Thus, a major 

limitation to our study is that, in pursuing the most well-curated 

genetic conditions that exhibit anemia manifestations, we may 

have inadvertently set those criteria too high, which may 

effectively exclude other inherited anemias such as IRIDA and 

sideroblastic anemias from our current systems bioinformatics 

analysis (52,53,136). 

 

 

Figure 12: Summary of inherited anemias. 
 
 

The genetic basis underlying the inherited anemias is well 

established at the cellular and molecular level. (A): 

Abnormalities in erythropoiesis can result in reduced red blood 

cell (RBC) production in the bone marrow as a cellular basis for 

anemia. Congenital dyserythropoiesis anemia (CDA), Fanconi 

anemia (FA) and Diamond-Blackfan anemia (DBA) are 

canonical inherited anemias of this type. Non-canonical, 

inherited anemias like those accompanying POLG-related 

disorders also likely represent an RBC synthesis block as well. 

(B): Elevated levels of hemolysis, primarily by splenic 

macrophages in the red pulp of the spleen, can also result in a 

cellular basis for anemia. Examples of increased RBC 

destruction rates are typified by hereditary spherocytosis and 

glucose-6-phosphate dehydrogenase (G6PD) deficiency. (C): 

Clotting disorders, either due to defective clotting cascades in 

the vascular lumen (i.e., hemophilia A or hemophilia B) or 

defective Von Willebrand Factor action in the subendothelium, 

comprises a cellular-physiological basis for anemia. (D): 

Defective hemoglobin production or operation constitutes 

several globinopathies, and includes Sickle-cell anemia, and the 

various thalassemias. 
 

5. Conclusions 

Future work should address this study’s limitations, and thus 

include additional loci. Namely, a comprehensive system 

bioinformatics analysis of anemia manifestations in any genetic 

disorder might reveal hitherto undetected gene-phenotype 

patterns. With an expanded list of genes, there is a good chance 

that additional, deeper component and/or cluster definitions 

reveal themselves as related to categorical allele levels and/or 

the extent of phenotypic manifestation. In doing so, genetic 

disorders that occasionally manifest with anemia, and as such 

are not typically considered inherited anemias by clinicians, 

might receive a TDA-mediated taxonomic classification. Close 

integration with clinicians may thus drive better prognostic 

outcomes in patients cases involving inherited anemias. For 

example, the recognition of poor survivorship of patients 

diagnosed with POLG-related disorders whom simultaneously 

present with anemia manifestations in the clinic warrants  
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expanded Kaplan-Meier survivorship surveillance for all 

inherited anemia loci (74). As expected, the overall complexity 

underlying any given allele’s penetrance (i.e., degree of loss-of-

function), any particular gene’s level of essentiality (i.e., 

stringent constancy due to a dearth of gene duplication events), 

or any given genotype (i.e., complete dominance versus 

haploinsufficiency) dramatically increases the level of 

understanding needed to enhance clinical outcomes. A 

combination of MSA and TDA approaches can thus help 

elucidate key interactions buried underneath such layers (i.e., 

allele-level, gene-level, and genotype-level) that contribute 

towards disease complexity in a combinatorial way. An 

interesting future topic building on this article’s current 

taxonomic framework might be to analyze known treatments for 

the inherited anemias in multidimensional space, and after using 

MSA and TDA to collapse dimensionality, to check if TDA 

treatment clusters resemble TDA allelic and/or TDA phenotypic 

clusters. Such work might provide a quantitative means of 

relating not only genotype to phenotype, but also to treatment 

mode and to survivorship surveillance, in the overall pursuit of 

enhancing patient outcomes. 
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